Skip to content

ImpactModel

A class for impact modeling.

Source code in aimz/model/impact_model.py
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
class ImpactModel(BaseModel):
    """A class for impact modeling."""

    def __init__(
        self,
        kernel: Callable,
        rng_key: ArrayLike,
        vi: "SVI",
        *,
        param_input: str = "X",
        param_output: str = "y",
    ) -> None:
        """Initialize an ImpactModel instance.

        Args:
            kernel (Callable): A probabilistic model with Pyro primitives.
            rng_key (ArrayLike): A pseudo-random number generator key.
            vi (SVI): A variational inference object supported by NumPyro, such as an
                instance of `numpyro.infer.svi.SVI` or any other object that implements
                variational inference.
            param_input (str, optional): The name of the parameter in the `kernel` for
                the main input data. Defaults to `"X"`.
            param_output (str, optional): The name of the parameter in the `kernel` for
                the output data. Defaults to `"y"`.

        Warning:
            The `rng_key` parameter should be provided as a **typed key array**
            created with `jax.random.key()`, rather than a legacy `uint32` key created
            with `jax.random.PRNGKey()`.
        """
        super().__init__(kernel, param_input, param_output)

        if rng_key.dtype == jnp.uint32:
            msg = "Legacy `uint32` PRNGKey detected; converting to a typed key array."
            warn(msg, category=UserWarning, stacklevel=2)
            rng_key = random.wrap_key_data(rng_key)

        self.rng_key = rng_key
        self.vi = vi
        self._vi_state = None

        self._init_runtime_attrs()

    def _init_runtime_attrs(self) -> None:
        """Initialize runtime attributes."""
        self._fn_vi_update: Callable | None = None
        self._fn_sample_posterior_predictive: Callable | None = None
        self._fn_log_likelihood: Callable | None = None
        self._num_devices: int = local_device_count()
        self._mesh: Mesh | None
        self._device: NamedSharding | None
        if self._num_devices > 1:
            self._mesh = make_mesh((self._num_devices,), ("obs",))
            self._device = NamedSharding(self._mesh, PartitionSpec("obs"))
        else:
            self._mesh = None
            self._device = None
        logger.info(
            "Backend: %s, Devices: %d",
            default_backend(),
            self._num_devices,
        )

    def __del__(self) -> None:
        """Clean up the temporary directory when the instance is deleted."""
        self.cleanup()
        # Call the parent's __del__ method only if it exists and is callable
        super_del = getattr(super(), "__del__", None)
        if callable(super_del):
            super_del()

    def __getstate__(self) -> dict:
        """Return the state of the object excluding runtime attributes.

        Returns:
            The state of the object, excluding runtime attributes.
        """
        return {
            k: v
            for k, v in self.__dict__.items()
            if not (
                k.startswith("_fn")
                or k in {"_device", "_mesh", "_num_devices", "temp_dir"}
            )
        }

    def __setstate__(self, state: dict[str, object]) -> None:
        """Restore the state and reinitialize runtime attributes.

        Args:
            state (dict): The state to restore, excluding the runtime attributes.
        """
        self.__dict__.update(state)
        self._init_runtime_attrs()

    @property
    def vi_result(self) -> SVIRunResult:
        """Get the current variational inference result.

        Returns:
            The stored result from variational inference.
        """
        return self._vi_result

    @vi_result.setter
    def vi_result(self, vi_result: SVIRunResult) -> None:
        """Set the variational inference result manually.

        This sets the result from a variational inference run and marks the model as
        fitted. It does not perform posterior sampling — use `.sample()` separately to
        obtain samples.

        Args:
            vi_result (SVIRunResult): The result from a prior variational inference run.
                It must be a NamedTuple or similar object with the following fields:
                - params (dict): Learned parameters from inference.
                - state (SVIState): Internal SVI state object.
                - losses (ArrayLike): Loss values recorded during optimization.
        """
        if np.any(np.isnan(vi_result.losses)):
            msg = "Loss contains NaN or Inf, indicating numerical instability."
            warn(msg, category=RuntimeWarning, stacklevel=2)

        self._is_fitted = True

        self._vi_result = vi_result

    def sample_prior_predictive(
        self,
        X: ArrayLike,
        *,
        num_samples: int = 1000,
        rng_key: ArrayLike | None = None,
        return_sites: tuple[str] | None = None,
        **kwargs: object,
    ) -> dict[str, Array]:
        """Draw samples from the prior predictive distribution.

        Args:
            X (ArrayLike): Input data with shape `(n_samples_X, n_features)`.
            num_samples (int, optional): The number of samples to draw. Defaults to
                `1000`.
            rng_key (ArrayLike | None, optional): A pseudo-random number generator key.
                Defaults to `None`, then an internal key is used and split as needed.
            return_sites (tuple[str] | None, optional): Names of variables (sites) to
                return. If `None`, samples all latent, observed, and deterministic
                sites. Defaults to `None`.
            **kwargs (object): Additional arguments passed to the model. All array-like
                values are expected to be JAX arrays.

        Returns:
            The prior predictive samples.

        Raises:
            TypeError: If `self.param_output` is passed as an argument.
        """
        if rng_key is None:
            self.rng_key, rng_key = random.split(self.rng_key)

        # Validate the provided parameters against the kernel's signature
        args_bound = (
            signature(self.kernel).bind(**{self.param_input: X, **kwargs}).arguments
        )
        if self.param_output in args_bound:
            sub = self.param_output
            msg = f"{sub!r} is not allowed in `.sample_prior_predictive()`."
            raise TypeError(msg)

        return _sample_forward(
            self.kernel,
            rng_key=rng_key,
            num_samples=num_samples,
            return_sites=return_sites,
            posterior_samples=None,
            model_kwargs=args_bound,
        )

    def sample(
        self,
        num_samples: int = 1000,
        rng_key: ArrayLike | None = None,
        return_sites: tuple[str] | None = None,
    ) -> dict[str, Array]:
        """Draw posterior samples from a fitted model.

        Args:
            num_samples (int | None, optional): The number of posterior samples to draw.
                Defaults to `1000`.
            rng_key (ArrayLike | None, optional): A pseudo-random number generator key.
                Defaults to `None`, then an internal key is used and split as needed.
            return_sites (tuple[str] | None, optional): Names of variables (sites) to
                return. If `None`, samples all latent sites. Defaults to `None`.

        Returns:
            The posterior samples.

        """
        _check_is_fitted(self)

        if rng_key is None:
            self.rng_key, rng_key = random.split(self.rng_key)

        return _sample_forward(
            substitute(self.vi.guide, data=self.vi_result.params),
            rng_key=rng_key,
            num_samples=num_samples,
            return_sites=return_sites,
            posterior_samples=None,
            model_kwargs=None,
        )

    def sample_posterior_predictive(
        self,
        X: ArrayLike,
        *,
        rng_key: ArrayLike | None = None,
        return_sites: tuple[str] | None = None,
        intervention: dict | None = None,
        **kwargs: object,
    ) -> dict[str, Array]:
        """Draw samples from the posterior predictive distribution.

        Args:
            X (ArrayLike): Input data with shape `(n_samples_X, n_features)`.
            rng_key (ArrayLike | None, optional): A pseudo-random number generator key.
                Defaults to `None`, then an internal key is used and split as needed.
            return_sites (tuple[str] | None, optional): Names of variables (sites) to
                return. If `None`, samples all latent, observed, and deterministic
                sites. Defaults to `None`.
            intervention (dict | None, optional): A dictionary mapping sample sites to
                their corresponding intervention values. Interventions enable
                counterfactual analysis by modifying the specified sample sites during
                prediction (posterior predictive sampling). Defaults to `None`.
            **kwargs (object): Additional arguments passed to the model. All array-like
                values are expected to be JAX arrays.

        Returns:
            The posterior predictive samples.

        Raises:
            TypeError: If `self.param_output` is passed as an argument.
        """
        _check_is_fitted(self)

        if rng_key is None:
            self.rng_key, rng_key = random.split(self.rng_key)

        X = jnp.asarray(check_array(X))

        # Validate the provided parameters against the kernel's signature
        args_bound = (
            signature(self.kernel).bind(**{self.param_input: X, **kwargs}).arguments
        )
        if self.param_output in args_bound:
            sub = self.param_output
            msg = f"{sub!r} is not allowed in `.sample_prior_predictive()`."
            raise TypeError(msg)

        if intervention is None:
            kernel = self.kernel
        else:
            rng_key, rng_subkey = random.split(rng_key)
            kernel = seed(do(self.kernel, data=intervention), rng_seed=rng_subkey)

        return _sample_forward(
            kernel,
            rng_key=rng_key,
            num_samples=self.num_samples,
            return_sites=return_sites or self._return_sites,
            posterior_samples=self.posterior_sample_,
            model_kwargs=args_bound,
        )

    def train_on_batch(
        self,
        X: ArrayLike,
        y: ArrayLike,
        **kwargs: object,
    ) -> tuple[SVIState, Array]:
        """Run a single VI step on the given batch of data.

        Args:
            X (ArrayLike): Input data with shape `(n_samples_X, n_features)`.
            y (ArrayLike): Output data with shape `(n_samples_Y,)`.
            **kwargs (object): Additional arguments passed to the model. All array-like
                values are expected to be JAX arrays.

        Returns:
            (SVIState): Updated SVI state after the training step.
            (ArrayLike): Loss value as a scalar array.

        Note:
            This method updates the internal SVI state on every call, so it is not
            necessary to capture the returned state externally unless explicitly needed.
            However, the returned loss value can be used for monitoring or logging.
        """
        batch = {self.param_input: X, self.param_output: y, **kwargs}

        if self._vi_state is None:
            self.rng_key, rng_key = random.split(self.rng_key)
            self._vi_state = self.vi.init(rng_key, **batch)
        if self._fn_vi_update is None:
            _, kwargs_extra = _group_kwargs(kwargs)
            self._fn_vi_update = jit(
                self.vi.update,
                static_argnames=tuple(kwargs_extra._fields),
            )

        self._vi_state, loss = self._fn_vi_update(self._vi_state, **batch)

        return self._vi_state, loss

    def fit_on_batch(
        self,
        X: ArrayLike,
        y: ArrayLike,
        *,
        num_steps: int = 10000,
        num_samples: int = 1000,
        rng_key: ArrayLike | None = None,
        progress: bool = True,
        **kwargs: object,
    ) -> Self:
        """Fit the impact model to the provided batch of data.

        This method runs variational inference by invoking the `run()` method of the
        `SVI` instance from NumPyro to estimate the posterior distribution, and then
        draws samples from it.

        Args:
            X (ArrayLike): Input data with shape `(n_samples_X, n_features)`.
            y (ArrayLike): Output data with shape `(n_samples_Y,)`.
            num_steps (int, optional): Number of steps for variational inference
                optimization. Defaults to `10000`.
            num_samples (int | None, optional): The number of posterior samples to draw.
                Defaults to `1000`.
            rng_key (ArrayLike | None, optional): A pseudo-random number generator key.
                Defaults to `None`, then an internal key is used and split as needed.
            progress (bool, optional): Whether to display a progress bar. Defaults to
                `True`.
            **kwargs (object): Additional arguments passed to the model. All array-like
                values are expected to be JAX arrays.

        Returns:
            The fitted model instance, enabling method chaining.

        Note:
            This method continues training from the existing SVI state if available. To
            start training from scratch, create a new model instance.
        """
        if rng_key is None:
            self.rng_key, rng_key = random.split(self.rng_key)

        X, y = map(jnp.asarray, check_X_y(X, y, force_writeable=True, y_numeric=True))

        # Validate the provided parameters against the kernel's signature
        args_bound = (
            signature(self.kernel)
            .bind(**{self.param_input: X, self.param_output: y, **kwargs})
            .arguments
        )
        model_trace = trace(seed(self.kernel, rng_seed=self.rng_key)).get_trace(
            **args_bound,
        )
        # Validate the kernel body for output sample site and naming conflicts
        _validate_kernel_body(
            self.kernel,
            self.param_output,
            model_trace,
        )
        self._return_sites = (
            *(k for k, site in model_trace.items() if site["type"] == "deterministic"),
            self.param_output,
        )

        self.num_samples = num_samples

        logger.info("Performing variational inference optimization...")
        rng_key, rng_subkey = random.split(rng_key)
        self.vi_result = self.vi.run(
            rng_subkey,
            num_steps=num_steps,
            progress_bar=progress,
            init_state=self._vi_state,
            **args_bound,
        )
        self._vi_state = self.vi_result.state
        if np.any(np.isnan(self.vi_result.losses)):
            msg = "Loss contains NaN or Inf, indicating numerical instability."
            warn(msg, category=RuntimeWarning, stacklevel=2)

        self._is_fitted = True

        logger.info("Posterior sampling...")
        rng_key, rng_subkey = random.split(rng_key)
        self.posterior_sample_ = self.sample(self.num_samples, rng_key=rng_subkey)

        return self

    def fit(
        self,
        X: ArrayLike,
        y: ArrayLike,
        *,
        num_samples: int = 1000,
        rng_key: ArrayLike | None = None,
        progress: bool = True,
        batch_size: int | None = None,
        epochs: int = 1,
        shuffle: bool = True,
        **kwargs: object,
    ) -> Self:
        """Fit the impact model to the provided data using epoch-based training.

        This method implements an epoch-based training loop, where the data is iterated
        over in minibatches for a specified number of epochs. Variational inference is
        performed by repeatedly updating the model parameters on each minibatch, and
        then posterior samples are drawn from the fitted model.

        Args:
            X (ArrayLike): Input data with shape `(n_samples_X, n_features)`.
            y (ArrayLike): Output data with shape `(n_samples_Y,)`.
            num_samples (int | None, optional): The number of posterior samples to draw.
                Defaults to `1000`.
            rng_key (ArrayLike | None, optional): A pseudo-random number generator key.
                Defaults to `None`, then an internal key is used and split as needed.
            progress (bool, optional): Whether to display a progress bar. Defaults to
                `True`.
            batch_size (int | None, optional): The number of data points processed at
                each step of variational inference. If `None` (default), the entire
                dataset is used as a single batch in each epoch.
            epochs (int, optional): The number of epochs for variational inference
                optimization. Defaults to `1`.
            shuffle (bool, optional): Whether to shuffle the data at each epoch.
                Defaults to `True`.
            **kwargs (object): Additional arguments passed to the model. All array-like
                values are expected to be JAX arrays.

        Returns:
            The fitted model instance, enabling method chaining.

        Note:
            This method continues training from the existing SVI state if available.
            To start training from scratch, create a new model instance. It does not
            check whether the model or guide is written to support subsampling semantics
            (e.g., using NumPyro's `subsample` or similar constructs).
        """
        if rng_key is None:
            self.rng_key, rng_key = random.split(self.rng_key)

        X, y = check_X_y(X, y, force_writeable=True, y_numeric=True)

        # Validate the provided parameters against the kernel's signature
        args_bound = (
            signature(self.kernel)
            .bind(**{self.param_input: X, self.param_output: y, **kwargs})
            .arguments
        )
        model_trace = trace(seed(self.kernel, rng_seed=self.rng_key)).get_trace(
            **args_bound,
        )
        # Validate the kernel body for output sample site and naming conflicts
        _validate_kernel_body(
            self.kernel,
            self.param_output,
            model_trace,
        )
        self._return_sites = (
            *(k for k, site in model_trace.items() if site["type"] == "deterministic"),
            self.param_output,
        )

        self.num_samples = num_samples

        kwargs_array, kwargs_extra = _group_kwargs(kwargs)

        if batch_size is None:
            batch_size = len(X)
            msg = (
                f"No `batch_size` specified. Using full dataset size ({batch_size}). "
                "Specify `batch_size` to prevent memory issues."
            )
            warn(msg, category=UserWarning, stacklevel=2)
        if batch_size % self._num_devices != 0:
            msg = (
                f"The `batch_size` ({batch_size}) is not divisible by the number of "
                f"devices ({self._num_devices}). Use a multiple of {self._num_devices} "
                "for optimal performance."
            )
            warn(msg, category=UserWarning, stacklevel=2)

        dataloader = ArrayLoader(
            ArrayDataset(X, y, *kwargs_array),
            batch_size=batch_size or len(X),
            shuffle=shuffle,
        )

        logger.info("Performing variational inference optimization...")
        losses = []
        for epoch in range(epochs):
            losses_epoch = []
            pbar = tqdm(
                dataloader,
                desc=f"Epoch {epoch + 1}/{epochs}",
                disable=not progress,
            )
            for batch in pbar:
                self._vi_state, loss = self.train_on_batch(
                    jnp.asarray(batch[0]),
                    jnp.asarray(batch[1]),
                    **{
                        k: jnp.asarray(v)
                        for k, v in zip(kwargs_array._fields, batch[2:], strict=True)
                    },
                    **kwargs_extra._asdict(),
                )
                loss_batch = device_get(loss)
                losses_epoch.append(loss_batch)
                pbar.set_postfix({"loss": f"{float(loss_batch):.4f}"})
            losses_epoch = jnp.stack(losses_epoch)
            losses.extend(losses_epoch)
            tqdm.write(
                f"Epoch {epoch + 1}/{epochs} - "
                f"Average loss: {float(jnp.mean(losses_epoch)):.4f}",
            )
        self.vi_result = SVIRunResult(
            params=self.vi.get_params(self._vi_state),
            state=self._vi_state,
            losses=jnp.asarray(losses),
        )
        if np.any(np.isnan(self.vi_result.losses)):
            msg = "Loss contains NaN or Inf, indicating numerical instability."
            warn(msg, category=RuntimeWarning, stacklevel=2)

        self._is_fitted = True

        logger.info("Posterior sampling...")
        rng_key, rng_subkey = random.split(rng_key)
        self.posterior_sample_ = self.sample(self.num_samples, rng_key=rng_subkey)

        return self

    def is_fitted(self) -> bool:
        """Check fitted status.

        Returns:
            `True` if the model is fitted, `False` otherwise.

        """
        return hasattr(self, "_is_fitted") and self._is_fitted

    def set_posterior_sample(
        self,
        posterior_sample: dict[str, ArrayLike],
        return_sites: tuple[str] | None = None,
    ) -> Self:
        """Set posterior samples for the model.

        This method sets externally obtained posterior samples on the model instance,
        enabling downstream analysis without requiring a call to `.fit()`.

        It is primarily intended for workflows where inference is performed manually—
        for example, using NumPyro's `SVI` with the `Predictive` API—and the resulting
        posterior samples are injected into the model for further use.

        Internally, `batch_ndims` is set to `1` by default to correctly handle the batch
        dimensions of the posterior samples. For more information, refer to the
        [NumPyro Predictive documentation]
        (https://num.pyro.ai/en/stable/utilities.html#predictive).

        Args:
            posterior_sample (dict[str, ArrayLike]): Posterior samples to set for the
                model.
            return_sites (tuple[str] | None, optional): Names of variable (sites) to
                return in `.predict()`. Defaults to `None` and is set to `param_output`
                if not specified.

        Returns:
            The model instance, treated as fitted with posterior samples set, enabling
                method chaining.

        Raises:
            ValueError: If the batch shapes in `posterior_sample` are inconsistent
                (i.e., have different shapes).
        """
        self.posterior_sample_ = posterior_sample

        self._return_sites = return_sites or (self.param_output,)

        batch_ndims = 1
        batch_shapes = {
            sample.shape[:batch_ndims] for sample in self.posterior_sample_.values()
        }
        if len(batch_shapes) > 1:
            msg = f"Inconsistent batch shapes found in posterior_sample: {batch_shapes}"
            raise ValueError(msg)

        (self.num_samples,) = batch_shapes.pop()

        self._is_fitted = True

        return self

    def __sample_posterior_predictive(
        self,
        *,
        fn_sample_posterior_predictive: Callable,
        kernel: Callable,
        X: ArrayLike,
        rng_key: ArrayLike,
        group: str,
        batch_size: int,
        output_dir: Path,
        progress: bool,
        kwargs_array: NamedTuple,
        kwargs_extra: NamedTuple,
    ) -> az.InferenceData:
        kwargs_key = kwargs_array._fields + kwargs_extra._fields

        dataloader = ArrayLoader(
            ArrayDataset(X, *kwargs_array),
            batch_size=batch_size,
            collate_fn=lambda batch: ArrayLoader.collate_without_output(
                batch,
                device=self._device,
            ),
        )

        pbar = tqdm(
            desc=(f"Posterior predictive sampling [{', '.join(self._return_sites)}]"),
            total=len(dataloader),
            disable=not progress,
        )

        rng_key, *subkeys = random.split(rng_key, num=len(dataloader) + 1)
        if self._device and self._mesh:
            subkeys = device_put(
                subkeys,
                NamedSharding(self._mesh, PartitionSpec()),
            )

        zarr_group = open_group(output_dir, mode="w")
        zarr_arr = {}
        threads, queues, error_queue = _start_writer_threads(
            self._return_sites,
            group_path=output_dir,
            writer=_writer,
            queue_size=min(cpu_count() or 1, 4),
        )
        try:
            for batch, subkey in zip(dataloader, subkeys, strict=True):
                n_pad, x_batch, *kwargs_batch = batch
                dict_arr = fn_sample_posterior_predictive(
                    kernel,
                    self.num_samples,
                    subkey,
                    self._return_sites,
                    self.posterior_sample_,
                    self.param_input,
                    kwargs_key,
                    x_batch,
                    *(*kwargs_batch, *kwargs_extra),
                )
                for site, arr in dict_arr.items():
                    if site not in zarr_arr:
                        zarr_arr[site] = zarr_group.create_array(
                            name=site,
                            shape=(self.num_samples, 0, *arr.shape[2:]),
                            dtype=arr.dtype,
                            chunks=(self.num_samples, batch_size, *arr.shape[2:]),
                            dimension_names=(
                                "draw",
                                *tuple(f"{site}_dim{j}" for j in range(arr.ndim - 1)),
                            ),
                        )
                    queues[site].put(arr[:, : -n_pad or None])
                if not error_queue.empty():
                    _, exc, tb = error_queue.get()
                    raise exc.with_traceback(tb)
                pbar.update()
            pbar.set_description("Sampling complete, writing in progress...")
            _shutdown_writer_threads(threads, queues)
        except:
            _shutdown_writer_threads(threads, queues)
            logger.exception(
                "Exception encountered. Cleaning up output directory: %s",
                output_dir,
            )
            rmtree(output_dir, ignore_errors=True)
            raise
        finally:
            pbar.close()

        ds = open_zarr(output_dir, consolidated=False).expand_dims(dim="chain", axis=0)
        ds = ds.assign_coords(
            {k: np.arange(ds.sizes[k]) for k in ds.sizes},
        ).assign_attrs(make_attrs(library=modules["aimz"]))

        return az.convert_to_inference_data(ds, group=group)

    def predict_on_batch(
        self,
        X: ArrayLike,
        *,
        intervention: dict | None = None,
        rng_key: ArrayLike | None = None,
        in_sample: bool = True,
        **kwargs: object,
    ) -> az.InferenceData:
        """Predict the output based on the fitted model.

        This method returns predictions for a single batch of input data and is better
        suited for:
            1) Models incompatible with `.predict()` due to their posterior sample
                shapes.
            2) Scenarios where writing results to to files (e.g., disk, cloud storage)
                is not desired.
            3) Smaller datasets, as this method may be slower due to limited
                parallelism.

        Args:
            X (ArrayLike): Input data with shape `(n_samples_X, n_features)`.
            intervention (dict | None, optional): A dictionary mapping sample sites to
                their corresponding intervention values. Interventions enable
                counterfactual analysis by modifying the specified sample sites during
                prediction (posterior predictive sampling). Defaults to `None`.
            rng_key (ArrayLike | None, optional): A pseudo-random number generator key.
                Defaults to `None`, then an internal key is used and split as needed.
            in_sample (bool, optional): Specifies the group where posterior predictive
                samples are stored in the returned output. If `True`, samples are stored
                in the `posterior_predictive` group, indicating they were generated
                based on data used during model fitting. If `False`, samples are stored
                in the `predictions` group, indicating they were generated based on
                out-of-sample data.
            **kwargs (object): Additional arguments passed to the model. All array-like
                values are expected to be JAX arrays.

        Returns:
            An object containing posterior predictive samples.

        Raises:
            TypeError: If `self.param_output` is passed as an argument.
        """
        _check_is_fitted(self)

        if rng_key is None:
            self.rng_key, rng_key = random.split(self.rng_key)

        X = jnp.asarray(check_array(X))

        # Validate the provided parameters against the kernel's signature
        args_bound = (
            signature(self.kernel).bind(**{self.param_input: X, **kwargs}).arguments
        )
        if self.param_output in args_bound:
            sub = self.param_output
            msg = f"{sub!r} is not allowed in `.predict_on_batch()`."
            raise TypeError(msg)

        if intervention is None:
            kernel = self.kernel
        else:
            rng_key, rng_subkey = random.split(rng_key)
            kernel = seed(do(self.kernel, data=intervention), rng_seed=rng_subkey)

        posterior_predictive_sample = xr.Dataset(
            {
                site: xr.DataArray(
                    np.expand_dims(arr, axis=0),
                    coords={
                        "chain": np.arange(1),
                        "draw": np.arange(self.num_samples),
                        **{
                            f"{site}_dim{i}": np.arange(arr.shape[i + 1])
                            for i in range(arr.ndim - 1)
                        },
                    },
                    dims=(
                        # Adding the 'chain' dimension to support MCMC-style data
                        # structures.
                        "chain",
                        "draw",
                        # arr has shape (draw, dim0, dim1, ...), so arr.ndim includes
                        # 'draw' and we subtract 1
                        *[f"{site}_dim{i}" for i in range(arr.ndim - 1)],
                    ),
                    name=site,
                )
                for site, arr in _sample_forward(
                    kernel,
                    rng_key=rng_key,
                    num_samples=self.num_samples,
                    return_sites=self._return_sites,
                    posterior_samples=self.posterior_sample_,
                    model_kwargs=args_bound,
                ).items()
            },
        ).assign_attrs(make_attrs(library=modules["aimz"]))

        # Reorder the dimensions and add the return sites at the end
        dims_reordered = [
            "chain",
            "draw",
            *sorted(
                str(x)
                for x in list(posterior_predictive_sample.dims)
                if x not in {"chain", "draw"}
            ),
            *self._return_sites,
        ]

        out = az.convert_to_inference_data(
            posterior_predictive_sample[dims_reordered],
            group="posterior_predictive" if in_sample else "predictions",
        )
        out.add_groups(
            {
                "posterior": {
                    k: jnp.expand_dims(v, axis=0)
                    for k, v in self.posterior_sample_.items()
                },
            },
        )
        out["posterior"].attrs.update(make_attrs(library=modules["aimz"]))

        return out

    def predict(
        self,
        X: ArrayLike,
        *,
        intervention: dict | None = None,
        rng_key: ArrayLike | None = None,
        in_sample: bool = True,
        batch_size: int | None = None,
        output_dir: str | Path | None = None,
        progress: bool = True,
        **kwargs: object,
    ) -> az.InferenceData:
        """Predict the output based on the fitted model.

        This method performs posterior predictive sampling to generate model-based
        predictions. It is optimized for batch processing of large input data and is not
        recommended for use in loops that process only a few inputs at a time. Results
        are written to disk in the Zarr format, with sampling and file writing decoupled
        and executed concurrently.

        Args:
            X (ArrayLike): Input data with shape `(n_samples_X, n_features)`.
            intervention (dict | None, optional): A dictionary mapping sample sites to
                their corresponding intervention values. Interventions enable
                counterfactual analysis by modifying the specified sample sites during
                prediction (posterior predictive sampling). Defaults to `None`.
            rng_key (ArrayLike | None, optional): A pseudo-random number generator key.
                Defaults to `None`, then an internal key is used and split as needed.
            in_sample (bool, optional): Specifies the group where posterior predictive
                samples are stored in the returned output. If `True`, samples are stored
                in the `posterior_predictive` group, indicating they were generated
                based on data used during model fitting. If `False`, samples are stored
                in the `predictions` group, indicating they were generated based on
                out-of-sample data.
            batch_size (int | None, optional): The size of batches for data loading
                during posterior predictive sampling. Defaults to `None`, which sets the
                batch size to the total number of samples (`n_samples_X`). This value
                also determines the chunk size for storing the posterior predictive
                samples.
            output_dir (str | Path | None, optional): The directory where the outputs
                will be saved. If the specified directory does not exist, it will be
                created automatically. If `None`, a default temporary directory will be
                created. A timestamped subdirectory will be generated within this
                directory to store the outputs. Outputs are saved in the Zarr format.
            progress (bool, optional): Whether to display a progress bar. Defaults to
                `True`.
            **kwargs (object): Additional arguments passed to the model. All array-like
                values are expected to be JAX arrays.

        Returns:
            An object containing posterior predictive samples.

        Raises:
            TypeError: If `self.param_output` is passed as an argument.
        """
        _check_is_fitted(self)

        # Check for compatibility with the `.predict()` method.
        #
        # If any array in the posterior has shape (num_samples, num_obs)—i.e.,
        # `ndim == 2` and the second dimension matches the number of observations in
        # `X`—it suggests that the model produces per-observation posterior samples.
        # This makes it incompatible with the current `.predict()` implementation, which
        # uses sharded parallelism. In such cases, fall back to `.predict_on_batch()`
        # and raise a warning.
        ndim_posterior_sample = 2
        if any(
            v.ndim == ndim_posterior_sample and v.shape[1] == len(X)
            for v in self.posterior_sample_.values()
        ):
            msg = (
                "One or more posterior sample shapes are not compatible with "
                "`.predict()` under sharded parallelism; falling back to "
                "`.predict_on_batch()`."
            )
            warn(msg, category=UserWarning, stacklevel=2)

            return self.predict_on_batch(
                X,
                intervention=intervention,
                rng_key=rng_key,
                in_sample=in_sample,
                **kwargs,
            )

        if rng_key is None:
            self.rng_key, rng_key = random.split(self.rng_key)

        X = check_array(X)

        # Validate the provided parameters against the kernel's signature
        args_bound = (
            signature(self.kernel).bind(**{self.param_input: X, **kwargs}).arguments
        )
        if self.param_output in args_bound:
            sub = self.param_output
            msg = f"{sub!r} is not allowed in `.predict()`."
            raise TypeError(msg)

        if intervention is None:
            kernel = self.kernel
        else:
            rng_key, rng_subkey = random.split(rng_key)
            kernel = seed(do(self.kernel, data=intervention), rng_seed=rng_subkey)

        kwargs_array, kwargs_extra = _group_kwargs(kwargs)
        if self._fn_sample_posterior_predictive is None:
            self._fn_sample_posterior_predictive = _create_sharded_sampler(
                self._mesh,
                len(kwargs_array),
                len(kwargs_extra),
            )

        if batch_size is None:
            batch_size = len(X)
            msg = (
                f"No `batch_size` specified. Using full dataset size ({batch_size}). "
                "Specify `batch_size` to prevent memory issues, or use "
                "`.predict_on_batch()` directly."
            )
            warn(msg, category=UserWarning, stacklevel=2)
        if batch_size % self._num_devices != 0:
            msg = (
                f"The `batch_size` ({batch_size}) is not divisible by the number of "
                f"devices ({self._num_devices}). Use a multiple of {self._num_devices} "
                "for optimal performance."
            )
            warn(msg, category=UserWarning, stacklevel=2)

        if output_dir is None:
            if not hasattr(self, "temp_dir"):
                self.temp_dir = TemporaryDirectory()
                logger.info(
                    "Temporary directory created at: %s",
                    self.temp_dir.name,
                )
            output_dir = self.temp_dir.name
            logger.info(
                "No output directory provided. Using the model's temporary directory "
                "for storing output.",
            )
        output_subdir = _create_output_subdir(output_dir)

        out = self.__sample_posterior_predictive(
            fn_sample_posterior_predictive=self._fn_sample_posterior_predictive,
            kernel=kernel,
            X=X,
            rng_key=rng_key,
            group="posterior_predictive" if in_sample else "predictions",
            batch_size=batch_size,
            output_dir=output_subdir,
            progress=progress,
            kwargs_array=kwargs_array,
            kwargs_extra=kwargs_extra,
        )
        out.add_groups(
            {
                "posterior": {
                    k: jnp.expand_dims(v, axis=0)
                    for k, v in self.posterior_sample_.items()
                },
            },
        )
        out["posterior"].attrs.update(make_attrs(library=modules["aimz"]))

        return out

    def estimate_effect(
        self,
        output_baseline: az.InferenceData | None = None,
        output_intervention: az.InferenceData | None = None,
        args_baseline: dict | None = None,
        args_intervention: dict | None = None,
    ) -> az.InferenceData:
        """Estimate the effect of an intervention.

        Args:
            output_baseline (az.InferenceData | None, optional): Precomputed output for
                the baseline scenario.
            output_intervention (az.InferenceData | None, optional): Precomputed output
                for the intervention scenario.
            args_baseline (dict | None, optional): Input arguments for the baseline
                scenario. Passed to the `.predict()` method to compute predictions if
                `output_baseline` is not provided. Ignored if `output_baseline` is
                already given.
            args_intervention (dict | None, optional): Input arguments for the
                intervention scenario. Passed to the `.predict()` method to compute
                predictions if `output_intervention` is not provided. Ignored if
                `output_intervention` is already given.

        Returns:
            The estimated impact of an intervention.

        Raises:
            ValueError: If neither `output_baseline` nor `args_baseline` is provided, or
                if neither `output_intervention` nor `args_intervention` is provided.
        """
        _check_is_fitted(self)

        if output_baseline:
            idata_baseline = output_baseline
        elif args_baseline:
            idata_baseline = self.predict(**args_baseline)
        else:
            msg = "Either `output_baseline` or `args_baseline` must be provided."
            raise ValueError(msg)

        if output_intervention:
            idata_intervention = output_intervention
        elif args_intervention:
            idata_intervention = self.predict(**args_intervention)
        else:
            msg = (
                "Either `output_intervention` or `args_intervention` must be provided."
            )
            raise ValueError(msg)

        group = _validate_group(idata_baseline, idata_intervention)

        return az.convert_to_inference_data(
            idata_intervention[group] - idata_baseline[group],
            group=group,
        )

    def log_likelihood(
        self,
        X: ArrayLike,
        y: ArrayLike,
        *,
        batch_size: int | None = None,
        output_dir: str | Path | None = None,
        progress: bool = True,
        **kwargs: object,
    ) -> az.InferenceData:
        """Compute the log likelihood of the data under the given model.

        Results are written to disk in the Zarr format, with computing and file writing
        decoupled and executed concurrently.

        Args:
            X (ArrayLike): Input data with shape `(n_samples_X, n_features)`.
            y (ArrayLike): Output data with shape `(n_samples_Y,)`.
            batch_size (int | None, optional): The size of batches for data loading
                during posterior predictive sampling. Defaults to `None`, which sets the
                batch size to the total number of samples (`n_samples_X`). This value
                also determines the chunk size for storing the log-likelihood values.
            output_dir (str | Path | None, optional): The directory where the outputs
                will be saved. If the specified directory does not exist, it will be
                created automatically. If `None`, a default temporary directory will be
                created. A timestamped subdirectory will be generated within this
                directory to store the outputs. Outputs are saved in the Zarr format.
            progress (bool, optional): Whether to display a progress bar. Defaults to
                `True`.
            **kwargs (object): Additional arguments passed to the model. All array-like
                values are expected to be JAX arrays.

        Returns:
            An object containing log-likelihood values.
        """
        _check_is_fitted(self)

        # Validate the provided parameters against the kernel's signature
        signature(self.kernel).bind(**{self.param_input: X, **kwargs})

        X, y = check_X_y(X, y, force_writeable=True, y_numeric=True)

        kwargs_array, kwargs_extra = _group_kwargs(kwargs)
        if self._fn_log_likelihood is None:
            self._fn_log_likelihood = _create_sharded_log_likelihood(
                self._mesh,
                len(kwargs_array),
                len(kwargs_extra),
            )

        if batch_size is None:
            batch_size = len(X)
            msg = (
                f"No `batch_size` specified. Using full dataset size ({batch_size}). "
                "Specify `batch_size` to prevent memory issues."
            )
            warn(msg, category=UserWarning, stacklevel=2)
        if batch_size % self._num_devices != 0:
            msg = (
                f"The `batch_size` ({batch_size}) is not divisible by the number of "
                f"devices ({self._num_devices}). Use a multiple of {self._num_devices} "
                "for optimal performance."
            )
            warn(msg, category=UserWarning, stacklevel=2)

        if output_dir is None:
            if not hasattr(self, "temp_dir"):
                self.temp_dir = TemporaryDirectory()
                logger.info(
                    "Temporary directory created at: %s",
                    self.temp_dir.name,
                )
            output_dir = self.temp_dir.name
            logger.info(
                "No output directory provided. Using the model's temporary directory "
                "for storing output.",
            )
        output_subdir = _create_output_subdir(output_dir)

        dataloader = ArrayLoader(
            ArrayDataset(X, y, *kwargs_array),
            batch_size=batch_size or len(X),
            collate_fn=lambda batch: ArrayLoader.collate_with_sharding(
                batch,
                device=self._device,
            ),
        )

        site = self.param_output
        pbar = tqdm(
            desc=(f"Computing log-likelihood of {site}..."),
            total=len(dataloader),
            disable=not progress,
        )

        zarr_group = open_group(output_subdir, mode="w")
        zarr_arr = {}
        threads, queues, error_queue = _start_writer_threads(
            (site,),
            group_path=output_subdir,
            writer=_writer,
            queue_size=min(cpu_count() or 1, 4),
        )
        try:
            for batch in dataloader:
                n_pad, x_batch, y_batch, *kwargs_batch = batch
                arr = self._fn_log_likelihood(
                    # Although computing the log-likelihood is deterministic, the model
                    # still needs to be seeded in order to trace its graph.
                    seed(self.kernel, rng_seed=self.rng_key),
                    self.posterior_sample_,
                    self.param_input,
                    site,
                    kwargs_array._fields + kwargs_extra._fields,
                    x_batch,
                    y_batch,
                    *(*kwargs_batch, *kwargs_extra),
                )
                if site not in zarr_arr:
                    zarr_arr[site] = zarr_group.create_array(
                        name=site,
                        shape=(self.num_samples, 0, *arr.shape[2:]),
                        dtype=arr.dtype,
                        chunks=(self.num_samples, batch_size, *arr.shape[2:]),
                        dimension_names=(
                            "draw",
                            *tuple(f"{site}_dim{j}" for j in range(arr.ndim - 1)),
                        ),
                    )
                queues[site].put(arr[:, : -n_pad or None])
                if not error_queue.empty():
                    _, exc, tb = error_queue.get()
                    raise exc.with_traceback(tb)
                pbar.update()
            pbar.set_description("Computation complete, writing in progress...")
            _shutdown_writer_threads(threads, queues=queues)
        except:
            _shutdown_writer_threads(threads, queues=queues)
            logger.exception(
                "Exception encountered. Cleaning up output directory: %s",
                output_subdir,
            )
            rmtree(output_subdir, ignore_errors=True)
            raise
        finally:
            pbar.close()

        ds = open_zarr(output_subdir, consolidated=False).expand_dims(
            dim="chain",
            axis=0,
        )
        ds = ds.assign_coords(
            {k: np.arange(ds.sizes[k]) for k in ds.sizes},
        ).assign_attrs(make_attrs(library=modules["aimz"]))

        return az.convert_to_inference_data(ds, group="log_likelihood")

    def cleanup(self) -> None:
        """Clean up the temporary directory created for storing outputs.

        If the temporary directory was never created or has already been cleaned up,
        this method does nothing. It does not delete any explicitly specified output
        directory. While the temporary directory is typically removed automatically
        during garbage collection, this behavior is not guaranteed. Therefore, calling
        this method explicitly is recommended to ensure timely resource release.
        """
        if hasattr(self, "temp_dir"):
            logger.info("Temporary directory cleaned up at: %s", self.temp_dir.name)
            self.temp_dir.cleanup()
            del self.temp_dir

vi_result property writable

vi_result: SVIRunResult

Get the current variational inference result.

Returns:

Type Description
SVIRunResult

The stored result from variational inference.

__init__

__init__(kernel: Callable, rng_key: ArrayLike, vi: SVI, *, param_input: str = 'X', param_output: str = 'y') -> None

Parameters:

Name Type Description Default
kernel Callable

A probabilistic model with Pyro primitives.

required
rng_key ArrayLike

A pseudo-random number generator key.

required
vi SVI

A variational inference object supported by NumPyro, such as an instance of numpyro.infer.svi.SVI or any other object that implements variational inference.

required
param_input str

The name of the parameter in the kernel for the main input data. Defaults to "X".

'X'
param_output str

The name of the parameter in the kernel for the output data. Defaults to "y".

'y'
Warning

The rng_key parameter should be provided as a typed key array created with jax.random.key(), rather than a legacy uint32 key created with jax.random.PRNGKey().

Source code in aimz/model/impact_model.py
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
def __init__(
    self,
    kernel: Callable,
    rng_key: ArrayLike,
    vi: "SVI",
    *,
    param_input: str = "X",
    param_output: str = "y",
) -> None:
    """Initialize an ImpactModel instance.

    Args:
        kernel (Callable): A probabilistic model with Pyro primitives.
        rng_key (ArrayLike): A pseudo-random number generator key.
        vi (SVI): A variational inference object supported by NumPyro, such as an
            instance of `numpyro.infer.svi.SVI` or any other object that implements
            variational inference.
        param_input (str, optional): The name of the parameter in the `kernel` for
            the main input data. Defaults to `"X"`.
        param_output (str, optional): The name of the parameter in the `kernel` for
            the output data. Defaults to `"y"`.

    Warning:
        The `rng_key` parameter should be provided as a **typed key array**
        created with `jax.random.key()`, rather than a legacy `uint32` key created
        with `jax.random.PRNGKey()`.
    """
    super().__init__(kernel, param_input, param_output)

    if rng_key.dtype == jnp.uint32:
        msg = "Legacy `uint32` PRNGKey detected; converting to a typed key array."
        warn(msg, category=UserWarning, stacklevel=2)
        rng_key = random.wrap_key_data(rng_key)

    self.rng_key = rng_key
    self.vi = vi
    self._vi_state = None

    self._init_runtime_attrs()

__del__

__del__() -> None

Clean up the temporary directory when the instance is deleted.

Source code in aimz/model/impact_model.py
141
142
143
144
145
146
147
def __del__(self) -> None:
    """Clean up the temporary directory when the instance is deleted."""
    self.cleanup()
    # Call the parent's __del__ method only if it exists and is callable
    super_del = getattr(super(), "__del__", None)
    if callable(super_del):
        super_del()

__getstate__

__getstate__() -> dict

Return the state of the object excluding runtime attributes.

Returns:

Type Description
dict

The state of the object, excluding runtime attributes.

Source code in aimz/model/impact_model.py
149
150
151
152
153
154
155
156
157
158
159
160
161
162
def __getstate__(self) -> dict:
    """Return the state of the object excluding runtime attributes.

    Returns:
        The state of the object, excluding runtime attributes.
    """
    return {
        k: v
        for k, v in self.__dict__.items()
        if not (
            k.startswith("_fn")
            or k in {"_device", "_mesh", "_num_devices", "temp_dir"}
        )
    }

__setstate__

__setstate__(state: dict[str, object]) -> None

Restore the state and reinitialize runtime attributes.

Parameters:

Name Type Description Default
state dict

The state to restore, excluding the runtime attributes.

required
Source code in aimz/model/impact_model.py
164
165
166
167
168
169
170
171
def __setstate__(self, state: dict[str, object]) -> None:
    """Restore the state and reinitialize runtime attributes.

    Args:
        state (dict): The state to restore, excluding the runtime attributes.
    """
    self.__dict__.update(state)
    self._init_runtime_attrs()

sample_prior_predictive

sample_prior_predictive(X: ArrayLike, *, num_samples: int = 1000, rng_key: ArrayLike | None = None, return_sites: tuple[str] | None = None, **kwargs: object) -> dict[str, Array]

Draw samples from the prior predictive distribution.

Parameters:

Name Type Description Default
X ArrayLike

Input data with shape (n_samples_X, n_features).

required
num_samples int

The number of samples to draw. Defaults to 1000.

1000
rng_key ArrayLike | None

A pseudo-random number generator key. Defaults to None, then an internal key is used and split as needed.

None
return_sites tuple[str] | None

Names of variables (sites) to return. If None, samples all latent, observed, and deterministic sites. Defaults to None.

None
**kwargs object

Additional arguments passed to the model. All array-like values are expected to be JAX arrays.

{}

Returns:

Type Description
dict[str, Array]

The prior predictive samples.

Raises:

Type Description
TypeError

If self.param_output is passed as an argument.

Source code in aimz/model/impact_model.py
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
def sample_prior_predictive(
    self,
    X: ArrayLike,
    *,
    num_samples: int = 1000,
    rng_key: ArrayLike | None = None,
    return_sites: tuple[str] | None = None,
    **kwargs: object,
) -> dict[str, Array]:
    """Draw samples from the prior predictive distribution.

    Args:
        X (ArrayLike): Input data with shape `(n_samples_X, n_features)`.
        num_samples (int, optional): The number of samples to draw. Defaults to
            `1000`.
        rng_key (ArrayLike | None, optional): A pseudo-random number generator key.
            Defaults to `None`, then an internal key is used and split as needed.
        return_sites (tuple[str] | None, optional): Names of variables (sites) to
            return. If `None`, samples all latent, observed, and deterministic
            sites. Defaults to `None`.
        **kwargs (object): Additional arguments passed to the model. All array-like
            values are expected to be JAX arrays.

    Returns:
        The prior predictive samples.

    Raises:
        TypeError: If `self.param_output` is passed as an argument.
    """
    if rng_key is None:
        self.rng_key, rng_key = random.split(self.rng_key)

    # Validate the provided parameters against the kernel's signature
    args_bound = (
        signature(self.kernel).bind(**{self.param_input: X, **kwargs}).arguments
    )
    if self.param_output in args_bound:
        sub = self.param_output
        msg = f"{sub!r} is not allowed in `.sample_prior_predictive()`."
        raise TypeError(msg)

    return _sample_forward(
        self.kernel,
        rng_key=rng_key,
        num_samples=num_samples,
        return_sites=return_sites,
        posterior_samples=None,
        model_kwargs=args_bound,
    )

sample

sample(num_samples: int = 1000, rng_key: ArrayLike | None = None, return_sites: tuple[str] | None = None) -> dict[str, Array]

Draw posterior samples from a fitted model.

Parameters:

Name Type Description Default
num_samples int | None

The number of posterior samples to draw. Defaults to 1000.

1000
rng_key ArrayLike | None

A pseudo-random number generator key. Defaults to None, then an internal key is used and split as needed.

None
return_sites tuple[str] | None

Names of variables (sites) to return. If None, samples all latent sites. Defaults to None.

None

Returns:

Type Description
dict[str, Array]

The posterior samples.

Source code in aimz/model/impact_model.py
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
def sample(
    self,
    num_samples: int = 1000,
    rng_key: ArrayLike | None = None,
    return_sites: tuple[str] | None = None,
) -> dict[str, Array]:
    """Draw posterior samples from a fitted model.

    Args:
        num_samples (int | None, optional): The number of posterior samples to draw.
            Defaults to `1000`.
        rng_key (ArrayLike | None, optional): A pseudo-random number generator key.
            Defaults to `None`, then an internal key is used and split as needed.
        return_sites (tuple[str] | None, optional): Names of variables (sites) to
            return. If `None`, samples all latent sites. Defaults to `None`.

    Returns:
        The posterior samples.

    """
    _check_is_fitted(self)

    if rng_key is None:
        self.rng_key, rng_key = random.split(self.rng_key)

    return _sample_forward(
        substitute(self.vi.guide, data=self.vi_result.params),
        rng_key=rng_key,
        num_samples=num_samples,
        return_sites=return_sites,
        posterior_samples=None,
        model_kwargs=None,
    )

sample_posterior_predictive

sample_posterior_predictive(X: ArrayLike, *, rng_key: ArrayLike | None = None, return_sites: tuple[str] | None = None, intervention: dict | None = None, **kwargs: object) -> dict[str, Array]

Draw samples from the posterior predictive distribution.

Parameters:

Name Type Description Default
X ArrayLike

Input data with shape (n_samples_X, n_features).

required
rng_key ArrayLike | None

A pseudo-random number generator key. Defaults to None, then an internal key is used and split as needed.

None
return_sites tuple[str] | None

Names of variables (sites) to return. If None, samples all latent, observed, and deterministic sites. Defaults to None.

None
intervention dict | None

A dictionary mapping sample sites to their corresponding intervention values. Interventions enable counterfactual analysis by modifying the specified sample sites during prediction (posterior predictive sampling). Defaults to None.

None
**kwargs object

Additional arguments passed to the model. All array-like values are expected to be JAX arrays.

{}

Returns:

Type Description
dict[str, Array]

The posterior predictive samples.

Raises:

Type Description
TypeError

If self.param_output is passed as an argument.

Source code in aimz/model/impact_model.py
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
def sample_posterior_predictive(
    self,
    X: ArrayLike,
    *,
    rng_key: ArrayLike | None = None,
    return_sites: tuple[str] | None = None,
    intervention: dict | None = None,
    **kwargs: object,
) -> dict[str, Array]:
    """Draw samples from the posterior predictive distribution.

    Args:
        X (ArrayLike): Input data with shape `(n_samples_X, n_features)`.
        rng_key (ArrayLike | None, optional): A pseudo-random number generator key.
            Defaults to `None`, then an internal key is used and split as needed.
        return_sites (tuple[str] | None, optional): Names of variables (sites) to
            return. If `None`, samples all latent, observed, and deterministic
            sites. Defaults to `None`.
        intervention (dict | None, optional): A dictionary mapping sample sites to
            their corresponding intervention values. Interventions enable
            counterfactual analysis by modifying the specified sample sites during
            prediction (posterior predictive sampling). Defaults to `None`.
        **kwargs (object): Additional arguments passed to the model. All array-like
            values are expected to be JAX arrays.

    Returns:
        The posterior predictive samples.

    Raises:
        TypeError: If `self.param_output` is passed as an argument.
    """
    _check_is_fitted(self)

    if rng_key is None:
        self.rng_key, rng_key = random.split(self.rng_key)

    X = jnp.asarray(check_array(X))

    # Validate the provided parameters against the kernel's signature
    args_bound = (
        signature(self.kernel).bind(**{self.param_input: X, **kwargs}).arguments
    )
    if self.param_output in args_bound:
        sub = self.param_output
        msg = f"{sub!r} is not allowed in `.sample_prior_predictive()`."
        raise TypeError(msg)

    if intervention is None:
        kernel = self.kernel
    else:
        rng_key, rng_subkey = random.split(rng_key)
        kernel = seed(do(self.kernel, data=intervention), rng_seed=rng_subkey)

    return _sample_forward(
        kernel,
        rng_key=rng_key,
        num_samples=self.num_samples,
        return_sites=return_sites or self._return_sites,
        posterior_samples=self.posterior_sample_,
        model_kwargs=args_bound,
    )

train_on_batch

train_on_batch(X: ArrayLike, y: ArrayLike, **kwargs: object) -> tuple[SVIState, Array]

Run a single VI step on the given batch of data.

Parameters:

Name Type Description Default
X ArrayLike

Input data with shape (n_samples_X, n_features).

required
y ArrayLike

Output data with shape (n_samples_Y,).

required
**kwargs object

Additional arguments passed to the model. All array-like values are expected to be JAX arrays.

{}

Returns:

Type Description
SVIState

Updated SVI state after the training step.

ArrayLike

Loss value as a scalar array.

Note

This method updates the internal SVI state on every call, so it is not necessary to capture the returned state externally unless explicitly needed. However, the returned loss value can be used for monitoring or logging.

Source code in aimz/model/impact_model.py
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
def train_on_batch(
    self,
    X: ArrayLike,
    y: ArrayLike,
    **kwargs: object,
) -> tuple[SVIState, Array]:
    """Run a single VI step on the given batch of data.

    Args:
        X (ArrayLike): Input data with shape `(n_samples_X, n_features)`.
        y (ArrayLike): Output data with shape `(n_samples_Y,)`.
        **kwargs (object): Additional arguments passed to the model. All array-like
            values are expected to be JAX arrays.

    Returns:
        (SVIState): Updated SVI state after the training step.
        (ArrayLike): Loss value as a scalar array.

    Note:
        This method updates the internal SVI state on every call, so it is not
        necessary to capture the returned state externally unless explicitly needed.
        However, the returned loss value can be used for monitoring or logging.
    """
    batch = {self.param_input: X, self.param_output: y, **kwargs}

    if self._vi_state is None:
        self.rng_key, rng_key = random.split(self.rng_key)
        self._vi_state = self.vi.init(rng_key, **batch)
    if self._fn_vi_update is None:
        _, kwargs_extra = _group_kwargs(kwargs)
        self._fn_vi_update = jit(
            self.vi.update,
            static_argnames=tuple(kwargs_extra._fields),
        )

    self._vi_state, loss = self._fn_vi_update(self._vi_state, **batch)

    return self._vi_state, loss

fit_on_batch

fit_on_batch(X: ArrayLike, y: ArrayLike, *, num_steps: int = 10000, num_samples: int = 1000, rng_key: ArrayLike | None = None, progress: bool = True, **kwargs: object) -> Self

Fit the impact model to the provided batch of data.

This method runs variational inference by invoking the run() method of the SVI instance from NumPyro to estimate the posterior distribution, and then draws samples from it.

Parameters:

Name Type Description Default
X ArrayLike

Input data with shape (n_samples_X, n_features).

required
y ArrayLike

Output data with shape (n_samples_Y,).

required
num_steps int

Number of steps for variational inference optimization. Defaults to 10000.

10000
num_samples int | None

The number of posterior samples to draw. Defaults to 1000.

1000
rng_key ArrayLike | None

A pseudo-random number generator key. Defaults to None, then an internal key is used and split as needed.

None
progress bool

Whether to display a progress bar. Defaults to True.

True
**kwargs object

Additional arguments passed to the model. All array-like values are expected to be JAX arrays.

{}

Returns:

Type Description
Self

The fitted model instance, enabling method chaining.

Note

This method continues training from the existing SVI state if available. To start training from scratch, create a new model instance.

Source code in aimz/model/impact_model.py
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
def fit_on_batch(
    self,
    X: ArrayLike,
    y: ArrayLike,
    *,
    num_steps: int = 10000,
    num_samples: int = 1000,
    rng_key: ArrayLike | None = None,
    progress: bool = True,
    **kwargs: object,
) -> Self:
    """Fit the impact model to the provided batch of data.

    This method runs variational inference by invoking the `run()` method of the
    `SVI` instance from NumPyro to estimate the posterior distribution, and then
    draws samples from it.

    Args:
        X (ArrayLike): Input data with shape `(n_samples_X, n_features)`.
        y (ArrayLike): Output data with shape `(n_samples_Y,)`.
        num_steps (int, optional): Number of steps for variational inference
            optimization. Defaults to `10000`.
        num_samples (int | None, optional): The number of posterior samples to draw.
            Defaults to `1000`.
        rng_key (ArrayLike | None, optional): A pseudo-random number generator key.
            Defaults to `None`, then an internal key is used and split as needed.
        progress (bool, optional): Whether to display a progress bar. Defaults to
            `True`.
        **kwargs (object): Additional arguments passed to the model. All array-like
            values are expected to be JAX arrays.

    Returns:
        The fitted model instance, enabling method chaining.

    Note:
        This method continues training from the existing SVI state if available. To
        start training from scratch, create a new model instance.
    """
    if rng_key is None:
        self.rng_key, rng_key = random.split(self.rng_key)

    X, y = map(jnp.asarray, check_X_y(X, y, force_writeable=True, y_numeric=True))

    # Validate the provided parameters against the kernel's signature
    args_bound = (
        signature(self.kernel)
        .bind(**{self.param_input: X, self.param_output: y, **kwargs})
        .arguments
    )
    model_trace = trace(seed(self.kernel, rng_seed=self.rng_key)).get_trace(
        **args_bound,
    )
    # Validate the kernel body for output sample site and naming conflicts
    _validate_kernel_body(
        self.kernel,
        self.param_output,
        model_trace,
    )
    self._return_sites = (
        *(k for k, site in model_trace.items() if site["type"] == "deterministic"),
        self.param_output,
    )

    self.num_samples = num_samples

    logger.info("Performing variational inference optimization...")
    rng_key, rng_subkey = random.split(rng_key)
    self.vi_result = self.vi.run(
        rng_subkey,
        num_steps=num_steps,
        progress_bar=progress,
        init_state=self._vi_state,
        **args_bound,
    )
    self._vi_state = self.vi_result.state
    if np.any(np.isnan(self.vi_result.losses)):
        msg = "Loss contains NaN or Inf, indicating numerical instability."
        warn(msg, category=RuntimeWarning, stacklevel=2)

    self._is_fitted = True

    logger.info("Posterior sampling...")
    rng_key, rng_subkey = random.split(rng_key)
    self.posterior_sample_ = self.sample(self.num_samples, rng_key=rng_subkey)

    return self

fit

fit(X: ArrayLike, y: ArrayLike, *, num_samples: int = 1000, rng_key: ArrayLike | None = None, progress: bool = True, batch_size: int | None = None, epochs: int = 1, shuffle: bool = True, **kwargs: object) -> Self

Fit the impact model to the provided data using epoch-based training.

This method implements an epoch-based training loop, where the data is iterated over in minibatches for a specified number of epochs. Variational inference is performed by repeatedly updating the model parameters on each minibatch, and then posterior samples are drawn from the fitted model.

Parameters:

Name Type Description Default
X ArrayLike

Input data with shape (n_samples_X, n_features).

required
y ArrayLike

Output data with shape (n_samples_Y,).

required
num_samples int | None

The number of posterior samples to draw. Defaults to 1000.

1000
rng_key ArrayLike | None

A pseudo-random number generator key. Defaults to None, then an internal key is used and split as needed.

None
progress bool

Whether to display a progress bar. Defaults to True.

True
batch_size int | None

The number of data points processed at each step of variational inference. If None (default), the entire dataset is used as a single batch in each epoch.

None
epochs int

The number of epochs for variational inference optimization. Defaults to 1.

1
shuffle bool

Whether to shuffle the data at each epoch. Defaults to True.

True
**kwargs object

Additional arguments passed to the model. All array-like values are expected to be JAX arrays.

{}

Returns:

Type Description
Self

The fitted model instance, enabling method chaining.

Note

This method continues training from the existing SVI state if available. To start training from scratch, create a new model instance. It does not check whether the model or guide is written to support subsampling semantics (e.g., using NumPyro's subsample or similar constructs).

Source code in aimz/model/impact_model.py
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
def fit(
    self,
    X: ArrayLike,
    y: ArrayLike,
    *,
    num_samples: int = 1000,
    rng_key: ArrayLike | None = None,
    progress: bool = True,
    batch_size: int | None = None,
    epochs: int = 1,
    shuffle: bool = True,
    **kwargs: object,
) -> Self:
    """Fit the impact model to the provided data using epoch-based training.

    This method implements an epoch-based training loop, where the data is iterated
    over in minibatches for a specified number of epochs. Variational inference is
    performed by repeatedly updating the model parameters on each minibatch, and
    then posterior samples are drawn from the fitted model.

    Args:
        X (ArrayLike): Input data with shape `(n_samples_X, n_features)`.
        y (ArrayLike): Output data with shape `(n_samples_Y,)`.
        num_samples (int | None, optional): The number of posterior samples to draw.
            Defaults to `1000`.
        rng_key (ArrayLike | None, optional): A pseudo-random number generator key.
            Defaults to `None`, then an internal key is used and split as needed.
        progress (bool, optional): Whether to display a progress bar. Defaults to
            `True`.
        batch_size (int | None, optional): The number of data points processed at
            each step of variational inference. If `None` (default), the entire
            dataset is used as a single batch in each epoch.
        epochs (int, optional): The number of epochs for variational inference
            optimization. Defaults to `1`.
        shuffle (bool, optional): Whether to shuffle the data at each epoch.
            Defaults to `True`.
        **kwargs (object): Additional arguments passed to the model. All array-like
            values are expected to be JAX arrays.

    Returns:
        The fitted model instance, enabling method chaining.

    Note:
        This method continues training from the existing SVI state if available.
        To start training from scratch, create a new model instance. It does not
        check whether the model or guide is written to support subsampling semantics
        (e.g., using NumPyro's `subsample` or similar constructs).
    """
    if rng_key is None:
        self.rng_key, rng_key = random.split(self.rng_key)

    X, y = check_X_y(X, y, force_writeable=True, y_numeric=True)

    # Validate the provided parameters against the kernel's signature
    args_bound = (
        signature(self.kernel)
        .bind(**{self.param_input: X, self.param_output: y, **kwargs})
        .arguments
    )
    model_trace = trace(seed(self.kernel, rng_seed=self.rng_key)).get_trace(
        **args_bound,
    )
    # Validate the kernel body for output sample site and naming conflicts
    _validate_kernel_body(
        self.kernel,
        self.param_output,
        model_trace,
    )
    self._return_sites = (
        *(k for k, site in model_trace.items() if site["type"] == "deterministic"),
        self.param_output,
    )

    self.num_samples = num_samples

    kwargs_array, kwargs_extra = _group_kwargs(kwargs)

    if batch_size is None:
        batch_size = len(X)
        msg = (
            f"No `batch_size` specified. Using full dataset size ({batch_size}). "
            "Specify `batch_size` to prevent memory issues."
        )
        warn(msg, category=UserWarning, stacklevel=2)
    if batch_size % self._num_devices != 0:
        msg = (
            f"The `batch_size` ({batch_size}) is not divisible by the number of "
            f"devices ({self._num_devices}). Use a multiple of {self._num_devices} "
            "for optimal performance."
        )
        warn(msg, category=UserWarning, stacklevel=2)

    dataloader = ArrayLoader(
        ArrayDataset(X, y, *kwargs_array),
        batch_size=batch_size or len(X),
        shuffle=shuffle,
    )

    logger.info("Performing variational inference optimization...")
    losses = []
    for epoch in range(epochs):
        losses_epoch = []
        pbar = tqdm(
            dataloader,
            desc=f"Epoch {epoch + 1}/{epochs}",
            disable=not progress,
        )
        for batch in pbar:
            self._vi_state, loss = self.train_on_batch(
                jnp.asarray(batch[0]),
                jnp.asarray(batch[1]),
                **{
                    k: jnp.asarray(v)
                    for k, v in zip(kwargs_array._fields, batch[2:], strict=True)
                },
                **kwargs_extra._asdict(),
            )
            loss_batch = device_get(loss)
            losses_epoch.append(loss_batch)
            pbar.set_postfix({"loss": f"{float(loss_batch):.4f}"})
        losses_epoch = jnp.stack(losses_epoch)
        losses.extend(losses_epoch)
        tqdm.write(
            f"Epoch {epoch + 1}/{epochs} - "
            f"Average loss: {float(jnp.mean(losses_epoch)):.4f}",
        )
    self.vi_result = SVIRunResult(
        params=self.vi.get_params(self._vi_state),
        state=self._vi_state,
        losses=jnp.asarray(losses),
    )
    if np.any(np.isnan(self.vi_result.losses)):
        msg = "Loss contains NaN or Inf, indicating numerical instability."
        warn(msg, category=RuntimeWarning, stacklevel=2)

    self._is_fitted = True

    logger.info("Posterior sampling...")
    rng_key, rng_subkey = random.split(rng_key)
    self.posterior_sample_ = self.sample(self.num_samples, rng_key=rng_subkey)

    return self

is_fitted

is_fitted() -> bool

Check fitted status.

Returns:

Type Description
bool

True if the model is fitted, False otherwise.

Source code in aimz/model/impact_model.py
620
621
622
623
624
625
626
627
def is_fitted(self) -> bool:
    """Check fitted status.

    Returns:
        `True` if the model is fitted, `False` otherwise.

    """
    return hasattr(self, "_is_fitted") and self._is_fitted

set_posterior_sample

set_posterior_sample(posterior_sample: dict[str, ArrayLike], return_sites: tuple[str] | None = None) -> Self

Set posterior samples for the model.

This method sets externally obtained posterior samples on the model instance, enabling downstream analysis without requiring a call to .fit().

It is primarily intended for workflows where inference is performed manually— for example, using NumPyro's SVI with the Predictive API—and the resulting posterior samples are injected into the model for further use.

Internally, batch_ndims is set to 1 by default to correctly handle the batch dimensions of the posterior samples. For more information, refer to the [NumPyro Predictive documentation] (https://num.pyro.ai/en/stable/utilities.html#predictive).

Parameters:

Name Type Description Default
posterior_sample dict[str, ArrayLike]

Posterior samples to set for the model.

required
return_sites tuple[str] | None

Names of variable (sites) to return in .predict(). Defaults to None and is set to param_output if not specified.

None

Returns:

Type Description
Self

The model instance, treated as fitted with posterior samples set, enabling method chaining.

Raises:

Type Description
ValueError

If the batch shapes in posterior_sample are inconsistent (i.e., have different shapes).

Source code in aimz/model/impact_model.py
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
def set_posterior_sample(
    self,
    posterior_sample: dict[str, ArrayLike],
    return_sites: tuple[str] | None = None,
) -> Self:
    """Set posterior samples for the model.

    This method sets externally obtained posterior samples on the model instance,
    enabling downstream analysis without requiring a call to `.fit()`.

    It is primarily intended for workflows where inference is performed manually—
    for example, using NumPyro's `SVI` with the `Predictive` API—and the resulting
    posterior samples are injected into the model for further use.

    Internally, `batch_ndims` is set to `1` by default to correctly handle the batch
    dimensions of the posterior samples. For more information, refer to the
    [NumPyro Predictive documentation]
    (https://num.pyro.ai/en/stable/utilities.html#predictive).

    Args:
        posterior_sample (dict[str, ArrayLike]): Posterior samples to set for the
            model.
        return_sites (tuple[str] | None, optional): Names of variable (sites) to
            return in `.predict()`. Defaults to `None` and is set to `param_output`
            if not specified.

    Returns:
        The model instance, treated as fitted with posterior samples set, enabling
            method chaining.

    Raises:
        ValueError: If the batch shapes in `posterior_sample` are inconsistent
            (i.e., have different shapes).
    """
    self.posterior_sample_ = posterior_sample

    self._return_sites = return_sites or (self.param_output,)

    batch_ndims = 1
    batch_shapes = {
        sample.shape[:batch_ndims] for sample in self.posterior_sample_.values()
    }
    if len(batch_shapes) > 1:
        msg = f"Inconsistent batch shapes found in posterior_sample: {batch_shapes}"
        raise ValueError(msg)

    (self.num_samples,) = batch_shapes.pop()

    self._is_fitted = True

    return self

predict_on_batch

predict_on_batch(X: ArrayLike, *, intervention: dict | None = None, rng_key: ArrayLike | None = None, in_sample: bool = True, **kwargs: object) -> InferenceData

Predict the output based on the fitted model.

This method returns predictions for a single batch of input data and is better suited for: 1) Models incompatible with .predict() due to their posterior sample shapes. 2) Scenarios where writing results to to files (e.g., disk, cloud storage) is not desired. 3) Smaller datasets, as this method may be slower due to limited parallelism.

Parameters:

Name Type Description Default
X ArrayLike

Input data with shape (n_samples_X, n_features).

required
intervention dict | None

A dictionary mapping sample sites to their corresponding intervention values. Interventions enable counterfactual analysis by modifying the specified sample sites during prediction (posterior predictive sampling). Defaults to None.

None
rng_key ArrayLike | None

A pseudo-random number generator key. Defaults to None, then an internal key is used and split as needed.

None
in_sample bool

Specifies the group where posterior predictive samples are stored in the returned output. If True, samples are stored in the posterior_predictive group, indicating they were generated based on data used during model fitting. If False, samples are stored in the predictions group, indicating they were generated based on out-of-sample data.

True
**kwargs object

Additional arguments passed to the model. All array-like values are expected to be JAX arrays.

{}

Returns:

Type Description
InferenceData

An object containing posterior predictive samples.

Raises:

Type Description
TypeError

If self.param_output is passed as an argument.

Source code in aimz/model/impact_model.py
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
def predict_on_batch(
    self,
    X: ArrayLike,
    *,
    intervention: dict | None = None,
    rng_key: ArrayLike | None = None,
    in_sample: bool = True,
    **kwargs: object,
) -> az.InferenceData:
    """Predict the output based on the fitted model.

    This method returns predictions for a single batch of input data and is better
    suited for:
        1) Models incompatible with `.predict()` due to their posterior sample
            shapes.
        2) Scenarios where writing results to to files (e.g., disk, cloud storage)
            is not desired.
        3) Smaller datasets, as this method may be slower due to limited
            parallelism.

    Args:
        X (ArrayLike): Input data with shape `(n_samples_X, n_features)`.
        intervention (dict | None, optional): A dictionary mapping sample sites to
            their corresponding intervention values. Interventions enable
            counterfactual analysis by modifying the specified sample sites during
            prediction (posterior predictive sampling). Defaults to `None`.
        rng_key (ArrayLike | None, optional): A pseudo-random number generator key.
            Defaults to `None`, then an internal key is used and split as needed.
        in_sample (bool, optional): Specifies the group where posterior predictive
            samples are stored in the returned output. If `True`, samples are stored
            in the `posterior_predictive` group, indicating they were generated
            based on data used during model fitting. If `False`, samples are stored
            in the `predictions` group, indicating they were generated based on
            out-of-sample data.
        **kwargs (object): Additional arguments passed to the model. All array-like
            values are expected to be JAX arrays.

    Returns:
        An object containing posterior predictive samples.

    Raises:
        TypeError: If `self.param_output` is passed as an argument.
    """
    _check_is_fitted(self)

    if rng_key is None:
        self.rng_key, rng_key = random.split(self.rng_key)

    X = jnp.asarray(check_array(X))

    # Validate the provided parameters against the kernel's signature
    args_bound = (
        signature(self.kernel).bind(**{self.param_input: X, **kwargs}).arguments
    )
    if self.param_output in args_bound:
        sub = self.param_output
        msg = f"{sub!r} is not allowed in `.predict_on_batch()`."
        raise TypeError(msg)

    if intervention is None:
        kernel = self.kernel
    else:
        rng_key, rng_subkey = random.split(rng_key)
        kernel = seed(do(self.kernel, data=intervention), rng_seed=rng_subkey)

    posterior_predictive_sample = xr.Dataset(
        {
            site: xr.DataArray(
                np.expand_dims(arr, axis=0),
                coords={
                    "chain": np.arange(1),
                    "draw": np.arange(self.num_samples),
                    **{
                        f"{site}_dim{i}": np.arange(arr.shape[i + 1])
                        for i in range(arr.ndim - 1)
                    },
                },
                dims=(
                    # Adding the 'chain' dimension to support MCMC-style data
                    # structures.
                    "chain",
                    "draw",
                    # arr has shape (draw, dim0, dim1, ...), so arr.ndim includes
                    # 'draw' and we subtract 1
                    *[f"{site}_dim{i}" for i in range(arr.ndim - 1)],
                ),
                name=site,
            )
            for site, arr in _sample_forward(
                kernel,
                rng_key=rng_key,
                num_samples=self.num_samples,
                return_sites=self._return_sites,
                posterior_samples=self.posterior_sample_,
                model_kwargs=args_bound,
            ).items()
        },
    ).assign_attrs(make_attrs(library=modules["aimz"]))

    # Reorder the dimensions and add the return sites at the end
    dims_reordered = [
        "chain",
        "draw",
        *sorted(
            str(x)
            for x in list(posterior_predictive_sample.dims)
            if x not in {"chain", "draw"}
        ),
        *self._return_sites,
    ]

    out = az.convert_to_inference_data(
        posterior_predictive_sample[dims_reordered],
        group="posterior_predictive" if in_sample else "predictions",
    )
    out.add_groups(
        {
            "posterior": {
                k: jnp.expand_dims(v, axis=0)
                for k, v in self.posterior_sample_.items()
            },
        },
    )
    out["posterior"].attrs.update(make_attrs(library=modules["aimz"]))

    return out

predict

predict(X: ArrayLike, *, intervention: dict | None = None, rng_key: ArrayLike | None = None, in_sample: bool = True, batch_size: int | None = None, output_dir: str | Path | None = None, progress: bool = True, **kwargs: object) -> InferenceData

Predict the output based on the fitted model.

This method performs posterior predictive sampling to generate model-based predictions. It is optimized for batch processing of large input data and is not recommended for use in loops that process only a few inputs at a time. Results are written to disk in the Zarr format, with sampling and file writing decoupled and executed concurrently.

Parameters:

Name Type Description Default
X ArrayLike

Input data with shape (n_samples_X, n_features).

required
intervention dict | None

A dictionary mapping sample sites to their corresponding intervention values. Interventions enable counterfactual analysis by modifying the specified sample sites during prediction (posterior predictive sampling). Defaults to None.

None
rng_key ArrayLike | None

A pseudo-random number generator key. Defaults to None, then an internal key is used and split as needed.

None
in_sample bool

Specifies the group where posterior predictive samples are stored in the returned output. If True, samples are stored in the posterior_predictive group, indicating they were generated based on data used during model fitting. If False, samples are stored in the predictions group, indicating they were generated based on out-of-sample data.

True
batch_size int | None

The size of batches for data loading during posterior predictive sampling. Defaults to None, which sets the batch size to the total number of samples (n_samples_X). This value also determines the chunk size for storing the posterior predictive samples.

None
output_dir str | Path | None

The directory where the outputs will be saved. If the specified directory does not exist, it will be created automatically. If None, a default temporary directory will be created. A timestamped subdirectory will be generated within this directory to store the outputs. Outputs are saved in the Zarr format.

None
progress bool

Whether to display a progress bar. Defaults to True.

True
**kwargs object

Additional arguments passed to the model. All array-like values are expected to be JAX arrays.

{}

Returns:

Type Description
InferenceData

An object containing posterior predictive samples.

Raises:

Type Description
TypeError

If self.param_output is passed as an argument.

Source code in aimz/model/impact_model.py
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
def predict(
    self,
    X: ArrayLike,
    *,
    intervention: dict | None = None,
    rng_key: ArrayLike | None = None,
    in_sample: bool = True,
    batch_size: int | None = None,
    output_dir: str | Path | None = None,
    progress: bool = True,
    **kwargs: object,
) -> az.InferenceData:
    """Predict the output based on the fitted model.

    This method performs posterior predictive sampling to generate model-based
    predictions. It is optimized for batch processing of large input data and is not
    recommended for use in loops that process only a few inputs at a time. Results
    are written to disk in the Zarr format, with sampling and file writing decoupled
    and executed concurrently.

    Args:
        X (ArrayLike): Input data with shape `(n_samples_X, n_features)`.
        intervention (dict | None, optional): A dictionary mapping sample sites to
            their corresponding intervention values. Interventions enable
            counterfactual analysis by modifying the specified sample sites during
            prediction (posterior predictive sampling). Defaults to `None`.
        rng_key (ArrayLike | None, optional): A pseudo-random number generator key.
            Defaults to `None`, then an internal key is used and split as needed.
        in_sample (bool, optional): Specifies the group where posterior predictive
            samples are stored in the returned output. If `True`, samples are stored
            in the `posterior_predictive` group, indicating they were generated
            based on data used during model fitting. If `False`, samples are stored
            in the `predictions` group, indicating they were generated based on
            out-of-sample data.
        batch_size (int | None, optional): The size of batches for data loading
            during posterior predictive sampling. Defaults to `None`, which sets the
            batch size to the total number of samples (`n_samples_X`). This value
            also determines the chunk size for storing the posterior predictive
            samples.
        output_dir (str | Path | None, optional): The directory where the outputs
            will be saved. If the specified directory does not exist, it will be
            created automatically. If `None`, a default temporary directory will be
            created. A timestamped subdirectory will be generated within this
            directory to store the outputs. Outputs are saved in the Zarr format.
        progress (bool, optional): Whether to display a progress bar. Defaults to
            `True`.
        **kwargs (object): Additional arguments passed to the model. All array-like
            values are expected to be JAX arrays.

    Returns:
        An object containing posterior predictive samples.

    Raises:
        TypeError: If `self.param_output` is passed as an argument.
    """
    _check_is_fitted(self)

    # Check for compatibility with the `.predict()` method.
    #
    # If any array in the posterior has shape (num_samples, num_obs)—i.e.,
    # `ndim == 2` and the second dimension matches the number of observations in
    # `X`—it suggests that the model produces per-observation posterior samples.
    # This makes it incompatible with the current `.predict()` implementation, which
    # uses sharded parallelism. In such cases, fall back to `.predict_on_batch()`
    # and raise a warning.
    ndim_posterior_sample = 2
    if any(
        v.ndim == ndim_posterior_sample and v.shape[1] == len(X)
        for v in self.posterior_sample_.values()
    ):
        msg = (
            "One or more posterior sample shapes are not compatible with "
            "`.predict()` under sharded parallelism; falling back to "
            "`.predict_on_batch()`."
        )
        warn(msg, category=UserWarning, stacklevel=2)

        return self.predict_on_batch(
            X,
            intervention=intervention,
            rng_key=rng_key,
            in_sample=in_sample,
            **kwargs,
        )

    if rng_key is None:
        self.rng_key, rng_key = random.split(self.rng_key)

    X = check_array(X)

    # Validate the provided parameters against the kernel's signature
    args_bound = (
        signature(self.kernel).bind(**{self.param_input: X, **kwargs}).arguments
    )
    if self.param_output in args_bound:
        sub = self.param_output
        msg = f"{sub!r} is not allowed in `.predict()`."
        raise TypeError(msg)

    if intervention is None:
        kernel = self.kernel
    else:
        rng_key, rng_subkey = random.split(rng_key)
        kernel = seed(do(self.kernel, data=intervention), rng_seed=rng_subkey)

    kwargs_array, kwargs_extra = _group_kwargs(kwargs)
    if self._fn_sample_posterior_predictive is None:
        self._fn_sample_posterior_predictive = _create_sharded_sampler(
            self._mesh,
            len(kwargs_array),
            len(kwargs_extra),
        )

    if batch_size is None:
        batch_size = len(X)
        msg = (
            f"No `batch_size` specified. Using full dataset size ({batch_size}). "
            "Specify `batch_size` to prevent memory issues, or use "
            "`.predict_on_batch()` directly."
        )
        warn(msg, category=UserWarning, stacklevel=2)
    if batch_size % self._num_devices != 0:
        msg = (
            f"The `batch_size` ({batch_size}) is not divisible by the number of "
            f"devices ({self._num_devices}). Use a multiple of {self._num_devices} "
            "for optimal performance."
        )
        warn(msg, category=UserWarning, stacklevel=2)

    if output_dir is None:
        if not hasattr(self, "temp_dir"):
            self.temp_dir = TemporaryDirectory()
            logger.info(
                "Temporary directory created at: %s",
                self.temp_dir.name,
            )
        output_dir = self.temp_dir.name
        logger.info(
            "No output directory provided. Using the model's temporary directory "
            "for storing output.",
        )
    output_subdir = _create_output_subdir(output_dir)

    out = self.__sample_posterior_predictive(
        fn_sample_posterior_predictive=self._fn_sample_posterior_predictive,
        kernel=kernel,
        X=X,
        rng_key=rng_key,
        group="posterior_predictive" if in_sample else "predictions",
        batch_size=batch_size,
        output_dir=output_subdir,
        progress=progress,
        kwargs_array=kwargs_array,
        kwargs_extra=kwargs_extra,
    )
    out.add_groups(
        {
            "posterior": {
                k: jnp.expand_dims(v, axis=0)
                for k, v in self.posterior_sample_.items()
            },
        },
    )
    out["posterior"].attrs.update(make_attrs(library=modules["aimz"]))

    return out

estimate_effect

estimate_effect(output_baseline: InferenceData | None = None, output_intervention: InferenceData | None = None, args_baseline: dict | None = None, args_intervention: dict | None = None) -> InferenceData

Estimate the effect of an intervention.

Parameters:

Name Type Description Default
output_baseline InferenceData | None

Precomputed output for the baseline scenario.

None
output_intervention InferenceData | None

Precomputed output for the intervention scenario.

None
args_baseline dict | None

Input arguments for the baseline scenario. Passed to the .predict() method to compute predictions if output_baseline is not provided. Ignored if output_baseline is already given.

None
args_intervention dict | None

Input arguments for the intervention scenario. Passed to the .predict() method to compute predictions if output_intervention is not provided. Ignored if output_intervention is already given.

None

Returns:

Type Description
InferenceData

The estimated impact of an intervention.

Raises:

Type Description
ValueError

If neither output_baseline nor args_baseline is provided, or if neither output_intervention nor args_intervention is provided.

Source code in aimz/model/impact_model.py
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
def estimate_effect(
    self,
    output_baseline: az.InferenceData | None = None,
    output_intervention: az.InferenceData | None = None,
    args_baseline: dict | None = None,
    args_intervention: dict | None = None,
) -> az.InferenceData:
    """Estimate the effect of an intervention.

    Args:
        output_baseline (az.InferenceData | None, optional): Precomputed output for
            the baseline scenario.
        output_intervention (az.InferenceData | None, optional): Precomputed output
            for the intervention scenario.
        args_baseline (dict | None, optional): Input arguments for the baseline
            scenario. Passed to the `.predict()` method to compute predictions if
            `output_baseline` is not provided. Ignored if `output_baseline` is
            already given.
        args_intervention (dict | None, optional): Input arguments for the
            intervention scenario. Passed to the `.predict()` method to compute
            predictions if `output_intervention` is not provided. Ignored if
            `output_intervention` is already given.

    Returns:
        The estimated impact of an intervention.

    Raises:
        ValueError: If neither `output_baseline` nor `args_baseline` is provided, or
            if neither `output_intervention` nor `args_intervention` is provided.
    """
    _check_is_fitted(self)

    if output_baseline:
        idata_baseline = output_baseline
    elif args_baseline:
        idata_baseline = self.predict(**args_baseline)
    else:
        msg = "Either `output_baseline` or `args_baseline` must be provided."
        raise ValueError(msg)

    if output_intervention:
        idata_intervention = output_intervention
    elif args_intervention:
        idata_intervention = self.predict(**args_intervention)
    else:
        msg = (
            "Either `output_intervention` or `args_intervention` must be provided."
        )
        raise ValueError(msg)

    group = _validate_group(idata_baseline, idata_intervention)

    return az.convert_to_inference_data(
        idata_intervention[group] - idata_baseline[group],
        group=group,
    )

log_likelihood

log_likelihood(X: ArrayLike, y: ArrayLike, *, batch_size: int | None = None, output_dir: str | Path | None = None, progress: bool = True, **kwargs: object) -> InferenceData

Compute the log likelihood of the data under the given model.

Results are written to disk in the Zarr format, with computing and file writing decoupled and executed concurrently.

Parameters:

Name Type Description Default
X ArrayLike

Input data with shape (n_samples_X, n_features).

required
y ArrayLike

Output data with shape (n_samples_Y,).

required
batch_size int | None

The size of batches for data loading during posterior predictive sampling. Defaults to None, which sets the batch size to the total number of samples (n_samples_X). This value also determines the chunk size for storing the log-likelihood values.

None
output_dir str | Path | None

The directory where the outputs will be saved. If the specified directory does not exist, it will be created automatically. If None, a default temporary directory will be created. A timestamped subdirectory will be generated within this directory to store the outputs. Outputs are saved in the Zarr format.

None
progress bool

Whether to display a progress bar. Defaults to True.

True
**kwargs object

Additional arguments passed to the model. All array-like values are expected to be JAX arrays.

{}

Returns:

Type Description
InferenceData

An object containing log-likelihood values.

Source code in aimz/model/impact_model.py
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
def log_likelihood(
    self,
    X: ArrayLike,
    y: ArrayLike,
    *,
    batch_size: int | None = None,
    output_dir: str | Path | None = None,
    progress: bool = True,
    **kwargs: object,
) -> az.InferenceData:
    """Compute the log likelihood of the data under the given model.

    Results are written to disk in the Zarr format, with computing and file writing
    decoupled and executed concurrently.

    Args:
        X (ArrayLike): Input data with shape `(n_samples_X, n_features)`.
        y (ArrayLike): Output data with shape `(n_samples_Y,)`.
        batch_size (int | None, optional): The size of batches for data loading
            during posterior predictive sampling. Defaults to `None`, which sets the
            batch size to the total number of samples (`n_samples_X`). This value
            also determines the chunk size for storing the log-likelihood values.
        output_dir (str | Path | None, optional): The directory where the outputs
            will be saved. If the specified directory does not exist, it will be
            created automatically. If `None`, a default temporary directory will be
            created. A timestamped subdirectory will be generated within this
            directory to store the outputs. Outputs are saved in the Zarr format.
        progress (bool, optional): Whether to display a progress bar. Defaults to
            `True`.
        **kwargs (object): Additional arguments passed to the model. All array-like
            values are expected to be JAX arrays.

    Returns:
        An object containing log-likelihood values.
    """
    _check_is_fitted(self)

    # Validate the provided parameters against the kernel's signature
    signature(self.kernel).bind(**{self.param_input: X, **kwargs})

    X, y = check_X_y(X, y, force_writeable=True, y_numeric=True)

    kwargs_array, kwargs_extra = _group_kwargs(kwargs)
    if self._fn_log_likelihood is None:
        self._fn_log_likelihood = _create_sharded_log_likelihood(
            self._mesh,
            len(kwargs_array),
            len(kwargs_extra),
        )

    if batch_size is None:
        batch_size = len(X)
        msg = (
            f"No `batch_size` specified. Using full dataset size ({batch_size}). "
            "Specify `batch_size` to prevent memory issues."
        )
        warn(msg, category=UserWarning, stacklevel=2)
    if batch_size % self._num_devices != 0:
        msg = (
            f"The `batch_size` ({batch_size}) is not divisible by the number of "
            f"devices ({self._num_devices}). Use a multiple of {self._num_devices} "
            "for optimal performance."
        )
        warn(msg, category=UserWarning, stacklevel=2)

    if output_dir is None:
        if not hasattr(self, "temp_dir"):
            self.temp_dir = TemporaryDirectory()
            logger.info(
                "Temporary directory created at: %s",
                self.temp_dir.name,
            )
        output_dir = self.temp_dir.name
        logger.info(
            "No output directory provided. Using the model's temporary directory "
            "for storing output.",
        )
    output_subdir = _create_output_subdir(output_dir)

    dataloader = ArrayLoader(
        ArrayDataset(X, y, *kwargs_array),
        batch_size=batch_size or len(X),
        collate_fn=lambda batch: ArrayLoader.collate_with_sharding(
            batch,
            device=self._device,
        ),
    )

    site = self.param_output
    pbar = tqdm(
        desc=(f"Computing log-likelihood of {site}..."),
        total=len(dataloader),
        disable=not progress,
    )

    zarr_group = open_group(output_subdir, mode="w")
    zarr_arr = {}
    threads, queues, error_queue = _start_writer_threads(
        (site,),
        group_path=output_subdir,
        writer=_writer,
        queue_size=min(cpu_count() or 1, 4),
    )
    try:
        for batch in dataloader:
            n_pad, x_batch, y_batch, *kwargs_batch = batch
            arr = self._fn_log_likelihood(
                # Although computing the log-likelihood is deterministic, the model
                # still needs to be seeded in order to trace its graph.
                seed(self.kernel, rng_seed=self.rng_key),
                self.posterior_sample_,
                self.param_input,
                site,
                kwargs_array._fields + kwargs_extra._fields,
                x_batch,
                y_batch,
                *(*kwargs_batch, *kwargs_extra),
            )
            if site not in zarr_arr:
                zarr_arr[site] = zarr_group.create_array(
                    name=site,
                    shape=(self.num_samples, 0, *arr.shape[2:]),
                    dtype=arr.dtype,
                    chunks=(self.num_samples, batch_size, *arr.shape[2:]),
                    dimension_names=(
                        "draw",
                        *tuple(f"{site}_dim{j}" for j in range(arr.ndim - 1)),
                    ),
                )
            queues[site].put(arr[:, : -n_pad or None])
            if not error_queue.empty():
                _, exc, tb = error_queue.get()
                raise exc.with_traceback(tb)
            pbar.update()
        pbar.set_description("Computation complete, writing in progress...")
        _shutdown_writer_threads(threads, queues=queues)
    except:
        _shutdown_writer_threads(threads, queues=queues)
        logger.exception(
            "Exception encountered. Cleaning up output directory: %s",
            output_subdir,
        )
        rmtree(output_subdir, ignore_errors=True)
        raise
    finally:
        pbar.close()

    ds = open_zarr(output_subdir, consolidated=False).expand_dims(
        dim="chain",
        axis=0,
    )
    ds = ds.assign_coords(
        {k: np.arange(ds.sizes[k]) for k in ds.sizes},
    ).assign_attrs(make_attrs(library=modules["aimz"]))

    return az.convert_to_inference_data(ds, group="log_likelihood")

cleanup

cleanup() -> None

Clean up the temporary directory created for storing outputs.

If the temporary directory was never created or has already been cleaned up, this method does nothing. It does not delete any explicitly specified output directory. While the temporary directory is typically removed automatically during garbage collection, this behavior is not guaranteed. Therefore, calling this method explicitly is recommended to ensure timely resource release.

Source code in aimz/model/impact_model.py
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
def cleanup(self) -> None:
    """Clean up the temporary directory created for storing outputs.

    If the temporary directory was never created or has already been cleaned up,
    this method does nothing. It does not delete any explicitly specified output
    directory. While the temporary directory is typically removed automatically
    during garbage collection, this behavior is not guaranteed. Therefore, calling
    this method explicitly is recommended to ensure timely resource release.
    """
    if hasattr(self, "temp_dir"):
        logger.info("Temporary directory cleaned up at: %s", self.temp_dir.name)
        self.temp_dir.cleanup()
        del self.temp_dir