ImpactModel
A class for impact modeling.
Source code in aimz/model/impact_model.py
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 |
|
vi_result
property
writable
vi_result: SVIRunResult
Get the current variational inference result.
Returns:
Type | Description |
---|---|
SVIRunResult
|
The stored result from variational inference. |
__init__
__init__(kernel: Callable, rng_key: ArrayLike, vi: SVI, *, param_input: str = 'X', param_output: str = 'y') -> None
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kernel
|
Callable
|
A probabilistic model with Pyro primitives. |
required |
rng_key
|
ArrayLike
|
A pseudo-random number generator key. |
required |
vi
|
SVI
|
A variational inference object supported by NumPyro, such as an
instance of |
required |
param_input
|
str
|
The name of the parameter in the |
'X'
|
param_output
|
str
|
The name of the parameter in the |
'y'
|
Warning
The rng_key
parameter should be provided as a typed key array
created with jax.random.key()
, rather than a legacy uint32
key created
with jax.random.PRNGKey()
.
Source code in aimz/model/impact_model.py
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
|
__del__
__del__() -> None
Clean up the temporary directory when the instance is deleted.
Source code in aimz/model/impact_model.py
141 142 143 144 145 146 147 |
|
__getstate__
__getstate__() -> dict
Return the state of the object excluding runtime attributes.
Returns:
Type | Description |
---|---|
dict
|
The state of the object, excluding runtime attributes. |
Source code in aimz/model/impact_model.py
149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
|
__setstate__
__setstate__(state: dict[str, object]) -> None
Restore the state and reinitialize runtime attributes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
state
|
dict
|
The state to restore, excluding the runtime attributes. |
required |
Source code in aimz/model/impact_model.py
164 165 166 167 168 169 170 171 |
|
sample_prior_predictive
sample_prior_predictive(X: ArrayLike, *, num_samples: int = 1000, rng_key: ArrayLike | None = None, return_sites: tuple[str] | None = None, **kwargs: object) -> dict[str, Array]
Draw samples from the prior predictive distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
ArrayLike
|
Input data with shape |
required |
num_samples
|
int
|
The number of samples to draw. Defaults to
|
1000
|
rng_key
|
ArrayLike | None
|
A pseudo-random number generator key.
Defaults to |
None
|
return_sites
|
tuple[str] | None
|
Names of variables (sites) to
return. If |
None
|
**kwargs
|
object
|
Additional arguments passed to the model. All array-like values are expected to be JAX arrays. |
{}
|
Returns:
Type | Description |
---|---|
dict[str, Array]
|
The prior predictive samples. |
Raises:
Type | Description |
---|---|
TypeError
|
If |
Source code in aimz/model/impact_model.py
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
|
sample
sample(num_samples: int = 1000, rng_key: ArrayLike | None = None, return_sites: tuple[str] | None = None) -> dict[str, Array]
Draw posterior samples from a fitted model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
num_samples
|
int | None
|
The number of posterior samples to draw.
Defaults to |
1000
|
rng_key
|
ArrayLike | None
|
A pseudo-random number generator key.
Defaults to |
None
|
return_sites
|
tuple[str] | None
|
Names of variables (sites) to
return. If |
None
|
Returns:
Type | Description |
---|---|
dict[str, Array]
|
The posterior samples. |
Source code in aimz/model/impact_model.py
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
|
sample_posterior_predictive
sample_posterior_predictive(X: ArrayLike, *, rng_key: ArrayLike | None = None, return_sites: tuple[str] | None = None, intervention: dict | None = None, **kwargs: object) -> dict[str, Array]
Draw samples from the posterior predictive distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
ArrayLike
|
Input data with shape |
required |
rng_key
|
ArrayLike | None
|
A pseudo-random number generator key.
Defaults to |
None
|
return_sites
|
tuple[str] | None
|
Names of variables (sites) to
return. If |
None
|
intervention
|
dict | None
|
A dictionary mapping sample sites to
their corresponding intervention values. Interventions enable
counterfactual analysis by modifying the specified sample sites during
prediction (posterior predictive sampling). Defaults to |
None
|
**kwargs
|
object
|
Additional arguments passed to the model. All array-like values are expected to be JAX arrays. |
{}
|
Returns:
Type | Description |
---|---|
dict[str, Array]
|
The posterior predictive samples. |
Raises:
Type | Description |
---|---|
TypeError
|
If |
Source code in aimz/model/impact_model.py
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
|
train_on_batch
train_on_batch(X: ArrayLike, y: ArrayLike, **kwargs: object) -> tuple[SVIState, Array]
Run a single VI step on the given batch of data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
ArrayLike
|
Input data with shape |
required |
y
|
ArrayLike
|
Output data with shape |
required |
**kwargs
|
object
|
Additional arguments passed to the model. All array-like values are expected to be JAX arrays. |
{}
|
Returns:
Type | Description |
---|---|
SVIState
|
Updated SVI state after the training step. |
ArrayLike
|
Loss value as a scalar array. |
Note
This method updates the internal SVI state on every call, so it is not necessary to capture the returned state externally unless explicitly needed. However, the returned loss value can be used for monitoring or logging.
Source code in aimz/model/impact_model.py
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
|
fit_on_batch
fit_on_batch(X: ArrayLike, y: ArrayLike, *, num_steps: int = 10000, num_samples: int = 1000, rng_key: ArrayLike | None = None, progress: bool = True, **kwargs: object) -> Self
Fit the impact model to the provided batch of data.
This method runs variational inference by invoking the run()
method of the
SVI
instance from NumPyro to estimate the posterior distribution, and then
draws samples from it.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
ArrayLike
|
Input data with shape |
required |
y
|
ArrayLike
|
Output data with shape |
required |
num_steps
|
int
|
Number of steps for variational inference
optimization. Defaults to |
10000
|
num_samples
|
int | None
|
The number of posterior samples to draw.
Defaults to |
1000
|
rng_key
|
ArrayLike | None
|
A pseudo-random number generator key.
Defaults to |
None
|
progress
|
bool
|
Whether to display a progress bar. Defaults to
|
True
|
**kwargs
|
object
|
Additional arguments passed to the model. All array-like values are expected to be JAX arrays. |
{}
|
Returns:
Type | Description |
---|---|
Self
|
The fitted model instance, enabling method chaining. |
Note
This method continues training from the existing SVI state if available. To start training from scratch, create a new model instance.
Source code in aimz/model/impact_model.py
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
|
fit
fit(X: ArrayLike, y: ArrayLike, *, num_samples: int = 1000, rng_key: ArrayLike | None = None, progress: bool = True, batch_size: int | None = None, epochs: int = 1, shuffle: bool = True, **kwargs: object) -> Self
Fit the impact model to the provided data using epoch-based training.
This method implements an epoch-based training loop, where the data is iterated over in minibatches for a specified number of epochs. Variational inference is performed by repeatedly updating the model parameters on each minibatch, and then posterior samples are drawn from the fitted model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
ArrayLike
|
Input data with shape |
required |
y
|
ArrayLike
|
Output data with shape |
required |
num_samples
|
int | None
|
The number of posterior samples to draw.
Defaults to |
1000
|
rng_key
|
ArrayLike | None
|
A pseudo-random number generator key.
Defaults to |
None
|
progress
|
bool
|
Whether to display a progress bar. Defaults to
|
True
|
batch_size
|
int | None
|
The number of data points processed at
each step of variational inference. If |
None
|
epochs
|
int
|
The number of epochs for variational inference
optimization. Defaults to |
1
|
shuffle
|
bool
|
Whether to shuffle the data at each epoch.
Defaults to |
True
|
**kwargs
|
object
|
Additional arguments passed to the model. All array-like values are expected to be JAX arrays. |
{}
|
Returns:
Type | Description |
---|---|
Self
|
The fitted model instance, enabling method chaining. |
Note
This method continues training from the existing SVI state if available.
To start training from scratch, create a new model instance. It does not
check whether the model or guide is written to support subsampling semantics
(e.g., using NumPyro's subsample
or similar constructs).
Source code in aimz/model/impact_model.py
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 |
|
is_fitted
is_fitted() -> bool
Check fitted status.
Returns:
Type | Description |
---|---|
bool
|
|
Source code in aimz/model/impact_model.py
620 621 622 623 624 625 626 627 |
|
set_posterior_sample
set_posterior_sample(posterior_sample: dict[str, ArrayLike], return_sites: tuple[str] | None = None) -> Self
Set posterior samples for the model.
This method sets externally obtained posterior samples on the model instance,
enabling downstream analysis without requiring a call to .fit()
.
It is primarily intended for workflows where inference is performed manually—
for example, using NumPyro's SVI
with the Predictive
API—and the resulting
posterior samples are injected into the model for further use.
Internally, batch_ndims
is set to 1
by default to correctly handle the batch
dimensions of the posterior samples. For more information, refer to the
[NumPyro Predictive documentation]
(https://num.pyro.ai/en/stable/utilities.html#predictive).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
posterior_sample
|
dict[str, ArrayLike]
|
Posterior samples to set for the model. |
required |
return_sites
|
tuple[str] | None
|
Names of variable (sites) to
return in |
None
|
Returns:
Type | Description |
---|---|
Self
|
The model instance, treated as fitted with posterior samples set, enabling method chaining. |
Raises:
Type | Description |
---|---|
ValueError
|
If the batch shapes in |
Source code in aimz/model/impact_model.py
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 |
|
predict_on_batch
predict_on_batch(X: ArrayLike, *, intervention: dict | None = None, rng_key: ArrayLike | None = None, in_sample: bool = True, **kwargs: object) -> InferenceData
Predict the output based on the fitted model.
This method returns predictions for a single batch of input data and is better
suited for:
1) Models incompatible with .predict()
due to their posterior sample
shapes.
2) Scenarios where writing results to to files (e.g., disk, cloud storage)
is not desired.
3) Smaller datasets, as this method may be slower due to limited
parallelism.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
ArrayLike
|
Input data with shape |
required |
intervention
|
dict | None
|
A dictionary mapping sample sites to
their corresponding intervention values. Interventions enable
counterfactual analysis by modifying the specified sample sites during
prediction (posterior predictive sampling). Defaults to |
None
|
rng_key
|
ArrayLike | None
|
A pseudo-random number generator key.
Defaults to |
None
|
in_sample
|
bool
|
Specifies the group where posterior predictive
samples are stored in the returned output. If |
True
|
**kwargs
|
object
|
Additional arguments passed to the model. All array-like values are expected to be JAX arrays. |
{}
|
Returns:
Type | Description |
---|---|
InferenceData
|
An object containing posterior predictive samples. |
Raises:
Type | Description |
---|---|
TypeError
|
If |
Source code in aimz/model/impact_model.py
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 |
|
predict
predict(X: ArrayLike, *, intervention: dict | None = None, rng_key: ArrayLike | None = None, in_sample: bool = True, batch_size: int | None = None, output_dir: str | Path | None = None, progress: bool = True, **kwargs: object) -> InferenceData
Predict the output based on the fitted model.
This method performs posterior predictive sampling to generate model-based predictions. It is optimized for batch processing of large input data and is not recommended for use in loops that process only a few inputs at a time. Results are written to disk in the Zarr format, with sampling and file writing decoupled and executed concurrently.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
ArrayLike
|
Input data with shape |
required |
intervention
|
dict | None
|
A dictionary mapping sample sites to
their corresponding intervention values. Interventions enable
counterfactual analysis by modifying the specified sample sites during
prediction (posterior predictive sampling). Defaults to |
None
|
rng_key
|
ArrayLike | None
|
A pseudo-random number generator key.
Defaults to |
None
|
in_sample
|
bool
|
Specifies the group where posterior predictive
samples are stored in the returned output. If |
True
|
batch_size
|
int | None
|
The size of batches for data loading
during posterior predictive sampling. Defaults to |
None
|
output_dir
|
str | Path | None
|
The directory where the outputs
will be saved. If the specified directory does not exist, it will be
created automatically. If |
None
|
progress
|
bool
|
Whether to display a progress bar. Defaults to
|
True
|
**kwargs
|
object
|
Additional arguments passed to the model. All array-like values are expected to be JAX arrays. |
{}
|
Returns:
Type | Description |
---|---|
InferenceData
|
An object containing posterior predictive samples. |
Raises:
Type | Description |
---|---|
TypeError
|
If |
Source code in aimz/model/impact_model.py
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 |
|
estimate_effect
estimate_effect(output_baseline: InferenceData | None = None, output_intervention: InferenceData | None = None, args_baseline: dict | None = None, args_intervention: dict | None = None) -> InferenceData
Estimate the effect of an intervention.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output_baseline
|
InferenceData | None
|
Precomputed output for the baseline scenario. |
None
|
output_intervention
|
InferenceData | None
|
Precomputed output for the intervention scenario. |
None
|
args_baseline
|
dict | None
|
Input arguments for the baseline
scenario. Passed to the |
None
|
args_intervention
|
dict | None
|
Input arguments for the
intervention scenario. Passed to the |
None
|
Returns:
Type | Description |
---|---|
InferenceData
|
The estimated impact of an intervention. |
Raises:
Type | Description |
---|---|
ValueError
|
If neither |
Source code in aimz/model/impact_model.py
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 |
|
log_likelihood
log_likelihood(X: ArrayLike, y: ArrayLike, *, batch_size: int | None = None, output_dir: str | Path | None = None, progress: bool = True, **kwargs: object) -> InferenceData
Compute the log likelihood of the data under the given model.
Results are written to disk in the Zarr format, with computing and file writing decoupled and executed concurrently.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X
|
ArrayLike
|
Input data with shape |
required |
y
|
ArrayLike
|
Output data with shape |
required |
batch_size
|
int | None
|
The size of batches for data loading
during posterior predictive sampling. Defaults to |
None
|
output_dir
|
str | Path | None
|
The directory where the outputs
will be saved. If the specified directory does not exist, it will be
created automatically. If |
None
|
progress
|
bool
|
Whether to display a progress bar. Defaults to
|
True
|
**kwargs
|
object
|
Additional arguments passed to the model. All array-like values are expected to be JAX arrays. |
{}
|
Returns:
Type | Description |
---|---|
InferenceData
|
An object containing log-likelihood values. |
Source code in aimz/model/impact_model.py
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 |
|
cleanup
cleanup() -> None
Clean up the temporary directory created for storing outputs.
If the temporary directory was never created or has already been cleaned up, this method does nothing. It does not delete any explicitly specified output directory. While the temporary directory is typically removed automatically during garbage collection, this behavior is not guaranteed. Therefore, calling this method explicitly is recommended to ensure timely resource release.
Source code in aimz/model/impact_model.py
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 |
|